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 AI -based approach to numerical PDEs 
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Physics-informed Neural Network 
 

Example: Solving a nonlinear Schrödinger equation with periodic 

boundary conditions  
 

2
0.5 0t xxih h h h+ + = ,  [ ] [ ]5,5 ,   0, / 2x t pÍ - Í , 

 

( ) (),0 2sechh x x= ,  ( ) ( )5, 5,h t h t- = ,  ( ) ( )5, 5,x xh t h t- = . 
 

Input to the network ï any set of values ( ),x t ,  
 

Network - 5 FC hidden layers, 100 neurons per layer, 
 

Output layer    ( ) ( ) ( )[ ], , , ,h x t u x t v x t=  .  
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Training loss function I  
 

Define 
2

: 0.5t xxf ih h h h= + +  
 

Physics-informed loss - 20,000fN =  randomly selected 

collocation points ( ),i ix t  inside the domain 
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1
,
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f i i

if

MSE f x t
N =

= ä . 

 

Loss at t=0 - 0 50N =  points { }jx , 5 5jx- < <,   
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Training loss function II  
 

Boundary loss - 50bN =  time samples {}kt   
 

( ) ( ) ( ) ( ){ }2 2

1

1
5, 5, 5, 5,

bN

b k k x k x k

kb

MSE h t h t h t h t
N =

= - - + - -ä  

 

The network is trained with aggregated loss 

 

0f bMSE MSE MSE MSE= + +   

 

Notice that fMSE  requires ñautomatic differentiationò of the neural 

network by the parameters ,x t. This is not trivial, but supported in 

platforms such as TensorFlow.  
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Physics-informed Neural Network  

 
( ),h x t  
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 Physics-informed NN 
 

ñWe must note however that the proposed methods should not be 

viewed as replacements of classical numerical methods for solving 

partial differential equations (e.g., finite elements, spectral methods, 

etc.). Such methods have matured over the last 50 years and, in 

many cases, meet the robustness and computational efficiency 

standards required in practice. Our message é is that classical 

methods é can coexist in harmony with deep neural networksò 
 

 

 

 M. Raissia, P.Perdikarisb and G.E.Karniadakisa, Physics-informed neural networks: A deep  

learning framework for solving forward and inverse problems involving nonlinear partial 

differential equations, Journal of Computational Physics 378 (2019) 686ï707 
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Numerical methods for the wave equation 

 

 
Obstacles (scatters) 

MW  - Sensor domain  

IW   - Source location 
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Basic notation 
 

( ) [ ], : 0,u x t TW³  , nWË ,       
1

: , ,x

n

u u
u u

x x

å õµ µ
Ð =Ð =æ öµ µç ÷

 

 

Vector field           () () ()( )1 , , : n n

nF x F x F x=   
 

Divergence                ()
1

, :
n

i

i i

F
div F F

x=

µ
= Ð =

µ
ä  

 

Laplace operator    ( )
2

2
1

:
n

i i

u
u div u

x=

µ
D = Ð =

µ
ä ,      

Discrete Laplace as convolution ( 2n= ),    

0 1 2 0

1 2 2 1 2

0 1 2 0

d

å õ
æ öD = -
æ ö
æ ö
ç ÷
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Numerical methods for the wave equation 
 

( ) () ( )( )
2

2

2
, ,

u
x t div c x u x t

t

µ
= Ð

µ
, 0 t T¢ ¢, xÍW. 

0u= ,  xÍµW,      ( ) ()0,0u x u x= , ( ) ()0,0
u

x v x
t

µ
=

µ
.  

 

The source support IW ËW  can be represented through b.c: 

( ) () ()0,0
I

u x x u xcW= ,  ( ) () ()0,0
I

u
x x v x

t
cW

µ
=

µ
. 

 

Finite difference scheme (c constant, ( ),d x jD  the discrete Laplace, 

1t xD =D = ) 
 

( ) ( ) ( ) ( )2, 1 , 2 , , 1du x j c u x j u x j u x j+ = D + - -. 
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Source location through time reversal re-focusing 

 

 
Input:  Obstacle locations, ( ) ( ), ,, tx T x Tu u , MxÍW . 

 

Goal: find IW , the unknown source location 
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Source location through time reversal re-focusing 

 

 
 

Method (*) : Reversed finite difference scheme for the wave equation 

backwards from time T  to time 0 based only on information from MW  at 

time T . This means initializing ( ), 0u x T =   for \ MxÍW W . 

 
(*) D. Givoli, Time Reversal as a Computational Tool in Acoustics and Elastodynamics, Journal of 

Computational Acoustics, 22 (2014).  
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Example for forward propagation 
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Example for time reversal with MW =W  
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Example for time reversal with MW ËW  
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Source location - AI -based toy problem 

 
Input ï only ( ),u x T é ( ),tu x T   is missing.   

 

 

 

 

 

 

 

 

 

 

Output - ( ),0u x  Source location at time 0. 
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Source location - AI -based toy problem 
 

( ),tu x T  is missing Ą problem is relatively óill-posedô. 
 

Method ï Train a regression convolutional network using software 

simulations that outputs ( ),x y  coordinates of predicted source. 
 

Training set ï 3,000 pairs of source locations and wave images at 

time T  
 

Testing set ï 1,000 pairs 

 

4-fold runs 
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Source location ï Convolutional Neural Network 

architecture  

 

Layer 0 (input) 128x128 image of ( ),u x T  

Layer 0 to layer 1 16 conv filters of size 31x31 

Layer 1 to layer 2 32 conv filters of size 5x5 

Layer 2 to layer 3 32 conv filters of size 31x31 

Layer 3 to output Fully connected 

Output predicted (x,y) coordinates of 

source.   
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Source location ï trained conv filters 
 

Visualization of the convolution filters at layer 1 
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Source location ï results (4-fold) 
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Obstacle segmentation 
 

Input  - sensor data 0 10 mt t t T= < < < =, 

- source location  

- boundary conditions 

 

Output  - obstacle segmentation map 

 

Current state-of-the-art using  

numerical methods + optimizations:  

unknown single circular obstacle 

 

Here we assume c const=  away  

from boundary and obstacles.  
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Waves at t =500  with different obstacles 
  


