Al-based approach to numerical PDEs
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Physics-informed Neural Network

Example: Solving a nonlinear Schrodinger equation with periodic
boundary conditions

ih +0.5h, +h’h=0, xe[-55], te[0,7z/2],
h(x,0)=2sech(x), h(-5t)=h(5t), h (-5t)=h,(51).
Input to the network — any set of values (x,t),

Network - 5 FC hidden layers, 100 neurons per layer,
Output layer h(xt)=[a(xt),7(xt)].
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Training loss function |
Define f :=ih +0.5h +\ﬁ\2 h

Physics-informed loss - N, = 20,000 randomly selected
collocation points ( x;,t;) inside the domain

MSE, = Z\ (x,t)

f =1

Loss at t=0 - N, =50 points {x;}, -5 < x; <5,

MSE, :|\1|Zﬁ(x. 0)—h(x,,0)’



Training loss function I

Boundary loss - N, =50 time samples {t, }

1 & (e -
MSE, = NZ{h(—5,tk)—h(5,tk )+

b k=1

ﬁx (_5’tk ) - ﬁIx (5’tk )‘2}

The network Is trained with aggregated loss

MSE = MSE, + MSE, + MSE,

Notice that MSE, requires “automatic differentiation” of the neural

network by the parameters x,t. This is not trivial, but supported in
platforms such as TensorFlow.
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Physics-informed Neural Network

h(xt)
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Physics-informed NN

“We must note however that the proposed methods should not be
viewed as replacements of classical numerical methods for solving
partial differential equations (e.qg., finite elements, spectral methods,

etc.). Such methods have matured over the last 50 years and, In
many cases, meet the robustness and computational efficiency
standards required 1n practice. Our message ... 1s that classical
methods ... can coexist in harmony with deep neural networks”

M. Raissia, P.Perdikarisb and G.E.Karniadakisa, Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial
differential equations, Journal of Computational Physics 378 (2019) 686707
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Numerical methods for the wave equation

/QM

<) 0

Obstacles (scatters)
Q, - Sensor domain

Q, - Source location




Basic notation

aXl ..,8—)(n
Vector field F(x)=(F(x),....F,(x)):R" > R’
O,

Divergence div(F)=(V,F)=>" ~
=1 i

u(x,t):Qx[0,T|->R, QcR", WVu ::qu=(6u auj

UNPERT

2 b}
i OX

Laplace operator Au:=div(Vu)=

(0 12 0
Discrete Laplace as convolution (n=2), A, =12 -2 1/2

0 Y2 0,
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Numerical methods for the wave equation
o°u
ot*

u=0, xedQ,  u(x0)=uy(x), ?:(X,O):vo(x).

(x,t)=div(c’(x)Vu(xt)), 0<t<T, xeQ.

The source support QQ, — Q can be represented through b.c:

0(%,0)= 70, (U (x), T (,0)= 70, (X)% ().

Finite difference scheme (c constant, A, (X, j) the discrete Laplace,
At=Ax=1)

u(X, j+1)=c*Au(x, j)+2u(x, j)—u(x, j-1).
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Source location through time reversal re-focusing

& T
o =

Input: Obstacle locations, u(x,7),u,(x,T), xeQ,,.

Goal: find ©,, the unknown source location
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Source location through time reversal re-focusing

o [
<

&

Method (*): Reversed finite difference scheme for the wave equation
backwards from time T to time 0 based only on information from 2,, at

time T . This means initializing u(x,T)=0 for xe Q\Q,, .

Q

(*) D. Givoli, Time Reversal as a Computational Tool in Acoustics and Elastodynamics, Journal of
Computational Acoustics, 22 (2014).

13



Example for forward propagation
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Example for time reversal with @, =0
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Example for time reversal with Q,, cQ
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Source location - Al-based toy problem

Input —only u(x,T)...u,(x,T) is missing.

Output - u(x,0) Source location at time 0.
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Source location - Al-based toy problem
u,(x,T) is missing = problem is relatively ‘ill-posed’.

Method — Train a regression convolutional network using software
simulations that outputs (x, y) coordinates of predicted source.

Training set — 3,000 pairs of source locations and wave images at
time T

Testing set — 1,000 pairs

4-fold runs
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Source location — Convolutional Neural Network
architecture

Layer O (input) 128x128 image of u(x,T)
_ayer O to layer 1 16 conv filters of size 31x31
_ayer 1 to layer 2 32 conv filters of size 5x5
_ayer 2 to layer 3 32 conv filters of size 31x31
_ayer 3 to output Fully connected

Output predicted (X,y) coordinates of
source.
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Source location — trained conv filters

Visualization of the convolution filters at layer 1
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Source location — results (4-fold)

Exact location 36%

Up to one pixel away /2%

Up to two pixels away 87%
Up to three pixel away 93%
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Obstacle segmentation

Input - sensor data 0 =t, <t <---<t_ =T,
- source location
- boundary conditions

3

Output - obstacle segmentation map

Current state-of-the-art using ’
numerical methods + optimizations:
unknown single circular obstacle

Here we assume € = const away 05
from boundary and obstacles.
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Waves at t =500 with different obstacles
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Obstacle segmentation — network architecture

Input: 2,000 time samples for each of the 8 sensors

Output: segmentation map of obstacle. Each pixel is logistic
regression variable with value [0,1]

FC = = =
32x32x16

128x128

1,024x1
4,096x1

16,000x1



Obstacle segmentation — Training loss

Dataset of 20,000 random polygonal obstacles.

p, (x) €{0,1}- ground truth. p, (x)=1if location x is part of the
obstacle in sample |I.

s, € R" - vector representation of sample | at the layer before last,
1
P, (X) -

1_|_ e_(<Wx’SI >+bx) ,
Minimization of Negative Log-Likelihood loss
1

ML=~ S b (0log (1) +(1-p, (x)log(1- , ()

xe[0,127]°

W eR", b, eR, xe[0,127]".
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Prediction

Ground Truth

Obstacle segmentation — results
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Obstacle segmentation — results

ANB|_,
0<IOU(A,B
<I0U (A B):= AUB S
Mean IOU Median 1OU
0.621 0.66
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Physics-informed obstacle segmentation

e Regularization of the solution using the wave equation.
e The known source, sensors and output obstacle image { p(x)},

0< p(x)<1, provide a solution a (function of p) to

?(X,t):CZdiv((l_ p(X))ZVU(X,t)), 0<t<T. XE[O,127]2.

e So, if the sensors are located at {x, }, _, then

k=1"

8 T

MSE : —ngZ (%, 1)=0(x,])) -

k=1 j=1

e Training loss - linear combination of NLL and physics informed
MSE.
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Physics-informed obstacle segmentation
{4(x,, j)} are a determined by obstacle map p(x).

But...how do we pass this information to the loss function?

We add to the architecture of the neural network, one
additional layer per time stamp, a(x, j),1< j<T.

We apply finite difference forward passes

a(x, j+1)=F(xc,p,u(-j),u(-j—-1)).

We collect from each layer j the values {4(X,, j)}i:1 and pass
to the loss function.
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