Al -based approach to numerical PDEs
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Physicsinformed Neural Network

Example: Solving anonlinear Schrodinger equation with periodic
boundary conditions

ih +0.5n, +h*h €, xi[-55,t [0p /3,
h(x0)=2seclx), h(-5,t) =h(5;), h(-51t) =h(5,t).
Input to the network any set of valuefx,t),

Network- 5 FC hidden layers, 100 neurons per layer,

Output layer h(xt)=[a(x1),¥ x 1] .

eee

(((QC
666660808

666646



Training loss function |
Define f :=ih, ©.50, \I%\Zﬁ

Physicsinformed loss- N, =20,00( randomly selected
collocation pointg x,t ) inside the domain

MSE, _—a\f )",

f =1

Lossat t=0- N, =50 points{ xj}, -5 X, §,

MS%—

o j=1



Training loss function |

Boundary loss- N, =50 time sample$t, }

wsg = LA {H 5.1) H51)

b k=1

9 (s

The network is trained with aggrdgd loss
MSE= MSE +MSE +MS

Notice thatMSE r equi res nautomati c di

network by the parametexst. This is not trivial, but supported In
platforms such as TensorFlow.
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Physcs-informed Neural Network
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Physicsinformed NN

NWe must nottbkeploposed methods shouddthot be
viewed as replacements of classical numerical metford®lving
partial differential equations (e.g., flaidements, spectral methods,

etc.). Such methods have matured over the last 50 years and,

many cases, meet the robustness and computational efficienc
standards required I n pract.
met hods e can coledeips tneiunr ahlarr

M. Raissia, P.Perdikarisb and G.E.Karniadakisa, Physfosmed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear patrtial
differential equations, Journal of Computationhy$ics 378 (2019) 68&07
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Numerical methods for the wave equation

/QM
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Obstacles (scatters)
W, - Sensor domain

w, - Source location




Bagc notation

u(xt):W3[0,T] -R, WER", Bu:=fn =9,

Vector field F(x)=(F(X),....,F(X)):R" - R"

Divergence div(F)=( BF): 4~
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Numerical methods for the wave equation
l:;lzj(x’t):‘J"V(CZ(X) B(x})),0¢t @, xl V.

u=0, xl u, u(x,O):UO(x),L:tJ(x,O):vo(x).

The sourcesupportW E \ can be represented throulgle:

u(x0)= ey (9w (4, (%0 = ey (x) (3.

Finite difference schem constantD, (X, j) the discrete Laplace,
Dt =0 1)

u(x j+1) = @o(x ) 26(x ) uxj 9.

11



Source location through time reversal refocusing

@/V .

Input: Obstaclelocatlonsu (%T),u(xT), xi W.

P Ly

Goal: find w, the unknown source location
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Source location through time reversal refocusing

<> R

@ O Q

Method (*): Reversedinite differenceschemdor the wave equation
backwards from timé to time O basednly oninformationfrom W, at

time T . This means initializingl( X, T) =0 for xI W \y.

(*) D. Givoli, Time Reversal as a Computational Tool in AcousticsEadtodynamicsJournal of
Computational Acoustics, 42014).
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Example for forward propagation
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Example for time reversal withw,, =
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Example for time reversal withw, E \

16



Source location- Al -based toy problem

Inputi only u(x T)é u,(xT) is missing

Ny

Output- u( x,0) Source location at time 0.
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Source location- Al -based toy problem
u, (X T) is missingA probem is relativelyd i-plols e d 6 .

Methodi Train aregressiorconvolutional networkising software
simulations that outpu{sx, y) coordinates of predicted source.

Training sefi 3,000pairs of source locations and wave images at
timeT

Testing set 1,000 pairs

4-fold runs
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Source locationi Convolutional Neural Network
architecture

Layer O(input) 128x128 image ofi( x, T)
_ayer O to layer 1 16 conv filters of size 31x31
_ayer 1 to layel@ 32 conv filters of size 5x5
_ayer 2 to layer 3 32 conv filters of size 31x31
_ayer 3 to output Fully connected

Output

predicted (X,y) coordinates of
source.
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Source locationi trained conv filters

Visualization of the convolution filterat layer 1
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Source locationi results (4fold)

Exact location 36%

Up to one pixel away /2%

Up to two pixels away 87%
Up to three pixel away 93%
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Obstacle segmentation

Input - sensor dat@=t, ¢, < t< T,
- source location
- boundary conditions

3

Output - obstacle segmentation

Current statef-the-art using ’
numeri@al methods + optimizatns:
unknownsingle circular obstacle

1

Here we assume= cons away 05
from boundary and obstacles.
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Waves att=500 with different obstacles
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