
Mathematical Foundations of ML - Basic models and statistics 

 

We have a binary classification problem.  

We build a predictive model for the problem based on training data.  

Example for problem: ( ),i ix y , n

ix  - vector of patient data,  0,1iy  - response variable = {cancer,no cancer} 
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We solve using the training data 

Loss Function 
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Solution is by simple differentiation to find the minima. We get a linear system of dimension 1n+ . For 1 k n  ,  
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Then, for a new incoming data point nx , we compute (in a regression problem) 
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For binary classification we perform simple “binning” (two bins in this example)   
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From statistical viewpoint - we have not utilized the fact that the problem is “categorical” binary classification.  



From approximation theoretical perspective – We have not utilized the fact that we want to approximate a piecewise 

constant function with a boundary determined by a hyperplane.  

 

Logistic regression and SoftMax loss function 

The logistic function 
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Statistical Modeling: ( ) ( ) ( )( )
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So we want to maximize the likelihood function 
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One typically normalizes with the size of the data set and minimizes the negative log-likelihood 

( ) ( ) ( )( )

( ) ( ) ( )( )

11 1
log | log 1

# #

1
log 1 log 1

#

ii
yy

i i

i I

i i i i

i I

L x h x h x
I I

y h x y h x
I

 

 


−





− = − −

= − + − −




 

This could be used on a pixel by pixel basis: the pixel is part of a segmentation or not.  

Minimization via gradient descent methods (not a linear system like linear regression).  

Also, this could be used for a multi-class problem where an image can have more than one label.  

Suppose we have L  classes. Each training vector ix  has L   labels ,i ky , 1, ,k L=  . The modeling is done through 
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This is separable (!) if there is no additional joint architecture that creates the feature space X ! That is, one could 

minimize separately for 1 k L  , 

( )
( ) ( ) ( )( ), ,

1
log 1 log 1

# k ki k i i k i

i I

y h x y h x
I

 


− + − − . 

Examples of multi-class labels in computer vision: woman/girl/dress, etc. 

 

Soft-Max 

If we have a classification problem which is not (!) a multi-class problem and we want to encourage a choice, we apply a 

soft-max technique. We use  , L

L nW M b =   . We model, with kw , the k-th row of W , 1 k L  , 
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The associated loss function is the minimization of the negative of the log-likelihood 
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Basic Definitions 

 

Training set – We train the model using training data 

Validation set - We have the option of using some ‘holdout’ data for hyper-parameter tuning 

Testing set – We use ‘ground truth’ testing data to analyze the performance of the model.  

Typical example – 70% training, 10% validation, 20% testing  

Cross validation – A research technique where we randomly split the full set into (for example) 5 parts, build a model 5 

times, each time testing on a different part after training on the remaining 4 parts. One can also randomly split the full 

set 5 times. We then average the error/accuracy by each model.    

Inference –In applications, we apply the model to incoming unlabeled data.  

 

 



Confusion matrix 

                                                        

 Actual  

 
Predicted 

 Categorical Non-Categorical 

Categorical  True Positive (TP) False Positive (FP) 

Non-Categorical  False Negative (FN) True Negative (TN) 

 

FP = Type I Error, FN = Type II Error 

 

We can obviously create a confusion matrix for arbitrary number of classes 
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 Class 1 Class 2 … … Class L 

Class 1      

Class 2      

      

Class L      

 

Optimally, outside the diagonal we hope to get small numbers/%. 

Definition: Accuracy. The simplest form of measurement 
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Accuracy is problematic in “rare events cases”. Suppose that we have a positives for 0.1% of the time. Then, a ‘stupid’ 

model that predicts Negtive for each sample has accuracy 99.9%.  

Definitions 
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e.g.: what % of the cancer patients did the model find? 

e.g. in document retrieval : relevant and retrieved / relevant 

The ‘stupid’ model that always predicts Negative will have recall = 0.  
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Precision (Positive Prediction Value)       
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e.g in document retrieval : Relevant and retrieved / all retrieved  
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