Mathematical Foundations of ML - Basic models and statistics

We have a binary classification problem.

We build a predictive model for the problem based on training data.

Example for problem: (Xi Y ) , % € R" - vector of patient data, Y, € {0,1} - response variable = {cancer,no cancer}

Option I linear regression. We train for unknown parameters 0 = (ﬂ,ﬂo), weights S = (ﬂl,...,ﬂn ) eR" andbias B, eR
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We solve using the training data
Loss Function

Loss(Y | X,6):= #,Z(Zﬂj X, + By — yijz,
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6=argmin Loss(Y | X,é)

Solution is by simple differentiation to find the minima. We get a linear system of dimension n+1. For 1<k <n,
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Then, for a new incoming data point XeR", we compute (in a regression problem)

n
V'=>"BX; + B,
j=1
For binary classification we perform simple “binning” (two bins in this example)
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From statistical viewpoint - we have not utilized the fact that the problem is “categorical” binary classification.



From approximation theoretical perspective — We have not utilized the fact that we want to approximate a piecewise
constant function with a boundary determined by a hyperplane.

Logistic regression and SoftMax loss function

The logistic function

o(t) > 0, 0(0)=05, o(t) >1
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We then model with 6:={8, ,} e R™*

Statistical Modeling: Pr(y|x,0)=h,(x)’ (1-h,(x))"
So we want to maximize the likelihood function

L(6]x)=Pr(Y|X,0)

=HPr(yi|xi,9)
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=TTh (%) (1-h,(x))""
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One typically normalizes with the size of the data set and minimizes the negative log-likelihood

_%Iog L(0]x)= —%Iothg (%)" (1=hy (%, ))l_y'
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:—%Z yilogh, (%) +(1-y; )log(1-h, (x))
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This could be used on a pixel by pixel basis: the pixel is part of a segmentation or not.
Minimization via gradient descent methods (not a linear system like linear regression).
Also, this could be used for a multi-class problem where an image can have more than one label.
Suppose we have L classes. Each training vector x; has L labels y;,, k=1,...,L . The modeling is done through
6, = (ﬂk 1ﬂ(|;)
L(9| x)= Pr(Y | X,9)

:Hﬁpr(yi,k | Xi’ek)
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iel k=1

ZZylklogh )+(1- vy )log(1=hy, (x))
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(#|1) logL(6]x)=~— IogHHh ) (L-hy (%))

This is separable (!) if there is no additional joint architecture that creates the feature space X ! That s, one could
minimize separately for 1<k <L,

T )Z Yoy logh, (% )+ (1=, )log(L-h, (x)).
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Examples of multi-class labels in computer vision: woman/girl/dress, etc.

Soft-Max

If we have a classification problem which is not (!) a multi-class problem and we want to encourage a choice, we apply a
soft-max technique. We use 6 = {W eM ., ,be RL} . We model, with W, , the k-throwof W, 1<k <L,

hidden logits
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The associated loss function is the minimization of the negative of the log-likelihood

—#—Zlog(Pr (Y =y,160.x)).
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Basic Definitions

Training set — We train the model using training data

Validation set - We have the option of using some ‘holdout’ data for hyper-parameter tuning
Testing set — We use ‘ground truth’ testing data to analyze the performance of the model.
Typical example — 70% training, 10% validation, 20% testing

Cross validation — A research technique where we randomly split the full set into (for example) 5 parts, build a model 5
times, each time testing on a different part after training on the remaining 4 parts. One can also randomly split the full
set 5 times. We then average the error/accuracy by each model.

Inference —In applications, we apply the model to incoming unlabeled data.



Confusion matrix

Actual
Categorical Non-Categorical
Predicted Categorical True Positive (TP) False Positive (FP)
Non-Categorical False Negative (FN) True Negative (TN)

FP = Type | Error, FN = Type Il Error

We can obviously create a confusion matrix for arbitrary number of classes

Actual
Class 1 Class 2 Class L

Class 1
Predicted Class 2

Class L

Optimally, outside the diagonal we hope to get small numbers/%.
Definition: Accuracy. The simplest form of measurement

TP+TN TP+TN

P+N (TP+FN)+(TN+FP)

Accuracy is problematic in “rare events cases”. Suppose that we have a positives for 0.1% of the time. Then, a ‘stupid’
model that predicts Negtive for each sample has accuracy 99.9%.

Definitions

e . TP TP
Sensitivity, Recall, True Positive Rate —=———
P TP+FN

e.g.: what % of the cancer patients did the model find?
e.g. in document retrieval : relevant and retrieved / relevant

The ‘stupid’ model that always predicts Negative will have recall = 0.

Specificity, True Negative (False) Rate m = —TN
' s N TN+FP
1(TP TN
Averaged accuracy —| — +—
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Precision (Positive Prediction Value) ———
TP+ FP

e.g in document retrieval : Relevant and retrieved / all retrieved



FP FP
False Positive Rate (fall out, false alarms) — =

N FP+TN
False Negative Rate (miss rate) N__FN_
P TP+FN

5 precision x recall
precision + recall

F1 Score



