
Numerical Methods For PDEs Over Manifolds Using Spectral

Physics Informed Neural Networks

Yuval Zelig Shai Dekel

School of Mathematical Sciences, Tel Aviv University
September 3, 2023

Abstract

We introduce an approach for solving PDEs over manifolds using physics informed neural
networks whose architecture aligns with spectral methods. The networks are trained to take
in as input samples of an initial condition, any time stamp and any point(s) on the manifold
and then output the solution’s value at the given time and point(s). We provide proofs of our
method for the heat equation on the interval and examples of unique network architectures that
are adapted to nonlinear equations on the sphere and the torus. We also show that our spectral-
inspired neural network architectures outperform the standard physics informed architectures.
Our extensive experimental results include generalization studies where the testing dataset of
initial conditions is randomly sampled from a significantly larger space than the training set.

1 Introduction

Time dependent differential equations are a basic tool for understanding many processes in physics,
chemistry, biology, economy and other fields. Therefore, solving those equations is an active area of
research [1, 2]. For many of those equations, an analytical solution does not exist and a numerical
method must be used. Numerical methods such as finite differences and finite elements methods
are applied successfully in many scenarios, however there remain many challenges. One still cannot
seamlessly incorporate noisy data into these algorithms, mesh generation is complex, especially for
the case of manifolds and solving high dimensional problems governed by parameterized PDEs is
sometimes out of reach.

In recent years, there is an emergence of machine learning methods and most notably Physics
Informed (PI) deep learning models [4],[20] that present an attractive alternative to the classical
numerical methods. PI machine learning allows to integrate seamlessly data and mathematical
physics models, even in partially understood, uncertain and high dimensional contexts. Making a
learning algorithm physics informed amounts to introducing appropriate observational, inductive or
learning biases that can steer the learning process towards identifying physically consistent solutions.
In this work we are focused on Physics Informed Neural Networks (PINN) that are designed to
solve Partial Differential Equations (PDEs) by enforcing the networks to approximately obey the
given governing equations. This can be achieved by applying loss functions corresponding to the
equations during the networks’ training phase. This technique allows to obtain relatively high
quality approximation without the need of ground truth data. There are various neural network
architectures that have been developed for this purpose, with different settings and strategies such as
automation differentiation [18], numerical schemes [5], grid-free [3, 4] or grid-dependent approaches
[5], and the ability to handle different geometries [19]. In this paper, we present a generalization of
spectral based deep learning methods for PDEs [23, 24, 25, 26]:

(i) The architecture of our PINNs is guided by the paradigm of spectral approximation over com-
pact Riemannian manifolds, where on each manifold we use the corresponding eigenfunction
basis of the Laplace-Beltrami operator. Introducing concepts from the theory of harmonic
analysis on manifolds to deep learning is an ongoing active research domain [16, 21, 29]. As

1

we shall see, in our PDE applications, this allows to construct neural networks that provide
higher accuracy using less parameters when compared with standard PINN architectures.

(ii) Typically, PINNs need to be re-trained for each given initial condition, whereas our approach
can be considered an adaptation of PINNs to operator learning [27, 29]. It is en par with
operator learning, as it allows the network to take in as input any initial condition from a
fixed subspace of initial conditions over the manifold and output the approximation to the
PDE at a given point x and time t. However, the main advantage of the PI approach is that
PINNs use the PDE to construct the loss function for the training phase and so do not require
ground truth data for the training of the model. For operator learning, one typically solves
the target operator using classical numerical methods in an offline stage and then trains the
neural networks using the obtained numeric solution [27]. Once trained, the neural networks
in both methods, provide fast, almost real-time, inference for any given initial condition.

The outline for the remainder of this paper is as follows. Section 2 reviews some preliminaries
about PINNs and spectral approximation over manifolds. Section 3 describes the key aspects of our
approach. In Section 4 we provide, as a pedagogical example, the theory and details of the method
for the simple case of the heat equation over the unit interval. In Sections 5 and 6 we show how our
approach is applied for nonlinear equations over the sphere and torus. Our extensive experimental
results include generalization studies where the testing dataset is sampled from a significantly larger
space than the training set. We also verify the stability of our models by injecting random noise to
the input and validating the errors increase in controlled manner. Concluding remarks are found
in Section 7.

2 Preliminaries

2.1 Physics informed neural networks

In this section, we describe the basic approach to PINNs presented in [4]. Generally, the goal is to
approximate the solution for a differential equation over a domain Ω of the form:

ut + N [u] = 0, t ∈ [0, T],

with some pre-defined initial and/or boundary conditions. Typically, a PINN ũ(x, t) is realized
using a Multi Layer Perception (MLP) architecture. This is a pass forward network where each
j-th layer takes as input the vector vj−1 which is the output of the previous layer, applies to it an
affine transformation y = Mjv+bj and then a coordinate-wise nonlinearity σ to produce the layer’s
output vj

vj = σ ◦ (Mjvj−1 + bj). (1)

In some architectures either the bias vector bj and/or the coordinate-wise nonlinearity σ are not
applied in certain layers. In a standard PINN architecture, the input to the network ũ is v0 = (x, t).
The unknown parameters of the network are the collection of weights {Mj , bj}j and the network is
trained to minimize the following loss function:

MSEB + MSE0 + MSED ,

with the boundary value loss component

MSEB =
1

Nb

Nb∑

i=1

|ũ(xb
i , t

b
i) − u(xb

i , t
b
i)|2,

the initial condition loss component

MSE0 =
1

N0

N0∑

i=1

|ũ(x0
i , 0)− u(x0

i , 0)|2,

2

and the differential loss component

MSED =
1

Nd

Nd∑

i=1

|(ũt + N [ũ])(xd
i , t

d
i)|2.

In the above, {(xb
i , t

b
i)}Nb

i=1 is a discretized, set of time and space points, where each u(xb
i , t

b
i) is the

true given boundary value at (xb
i , t

b
i). The set {x0

i }N0

i=1, is a discretized set of possibly randomized

points in the domain and the initial condition u(x, 0) is given. The set {(xd
i , t

d
i)}Nd

i=1, typically
contains randomly distributed internal domain collocation points and time steps. Since the ar-
chitecture of the neural network is given analytically (as in (1) for the case of MLP), the value
(ũt +N [ũ])|(xd

i ,td
i) at a data-point (xd

i , tdi) can be computed using the automatic differentiation fea-

ture of software packages such as TensorFlow and Pytorch [6, 7] (in our work we used TensorFlow).
Thus, the aggregated loss function enforces the approximating function ũ to satisfy required initial
and boundary conditions as well as the differential equation.

As we emphasized in the introduction, our approach is an adaptation of PINNs to operator
learning [27], where the network is trained to provide approximations to solutions for any initial
conditions from a given subspace. As we shall see, the adaptation requires applying the PI loss
functions for a given training set of initial conditions (see the loss functions (2),(3)).

2.2 Spectral decompositions over manifolds

PDEs on manifolds appear in a variety of problems and applications in fluid dynamics, material
science, geophysics, solid mechanics, control theory and biology. It is sometimes challenging to apply
numerical methods such as finite differences and finite elements, since grid or mesh generation as
well as discretizing the corresponding operators is complex. Therefore, applying PINNs in these
cases is potentially attractive, since the method is essentially grid free and does not require ground
truth data for its learning process.

Following recent advancements in deep learning methods over manifolds that use a spectral
approach [16, 21], in this work we base our PINN design on approximation of the numeric PDE
solutions in the spectral domain. To this end we recall a fundamental result in the spectral the-
ory over manifolds regarding the spectrum of the Laplace-Beltrami operator ∆ and the spectral
representation of the solution to the heat equation

Theorem 1. [8, Theorem 10.13] Let Ω be a non-empty compact relatively open subset of a Rie-
mannian manifold M with metric g and measure µ. The spectrum of L := −∆ on Ω is discrete
and consists of an increasing sequence {λk}∞k=1 of non-negative eigenvalues (with multiplicity) such
that limk→∞ λk = ∞. There is an orthonormal basis {φk}∞k=1 in L2(Ω) such that each function φk

is an eigenfunction of −∆ with eigenvalue λk. Moreover, the solution to the heat equation ut = ∆u
on Ω with initial condition u(x, t) = f(x), f ∈ L2(Ω), is given by:

u(x, t) =

∞∑

k=1

e−λkt〈f, φk〉φk(x).

This well established result motivates the following spectral paradigm. To solve the heat equa-
tion with some initial condition, one should first decompose the initial condition function to a linear
combination of the eigenfunctions basis and then apply a time-dependent exponential decay on the
initial value coefficients. An approximation entails working with the subspace spanned by {φk}K

k=1,
for some sufficiently large K (see e.g. Theorem 4 below). For a general manifold M, the eigenfunc-
tions do not necessarily have an analytic form and need to be approximated numerically. As we
will show, we also follow the spectral paradigm for more challenging cases of nonlinear equations
over manifolds, where the time dependent processing of the initial value coefficients is not obvious.
Nevertheless, a carefully crafted ‘spectral-inspired’ architecture can provide superior results over
standard network architectures.

3

3 The architecture of spectral PINNs

Let M ⊂ Rn be a Riemannian manifold, Ω ⊂ M a non-empty compact relatively open subset and
N a differential operator over this manifold, which can possibly be nonlinear. We assume our family
of initial conditions comes from a subset W ⊂ L2(Ω), of finite dimension, that can be selected to be

sufficiently large. Given a vector of samples ~f of f ∈ W over a fixed discrete subset of Ω, a point
x ∈ M and t ∈ [0, T], we would like to find an approximation ũ(~f, x, t), given by a trained neural
network ũ, to the solution

ut + N [u] = 0,

u(x, t = 0) = f(x), ∀x ∈ Ω.

Recall that typically PI networks are trained to approximate a solution for a single specific
initial condition (such as in [4]). However, we emphasize that our neural network model is trained
only once for the family of initial conditions from the subspace W and that once trained, it can
be used to solve the equation with any initial condition from W . Moreover, as we demonstrate in
our experimental results, the trained network has the ‘generalization’ property, since it is able to
approximate well the solutions when the initial value functions are randomly sampled from a larger
space containing W .

Our method takes inspiration from spectral methods for solving PDEs. It is composed of 3 steps
implemented by 3 blocks, as depicted in Figure 1:

1. Transformation Block - The role of this block is to compute from the samples ~f at specified
locations of the initial value condition f ∈ W a ‘projection’ onto UK = span{φk}K

k=1, for
some given K, where {φ}∞k=1 are the eigenfunctions of the Laplace-Beltrami operator on the

manifold. We denote this block as C̃ : ~W → R
K , where ~W is a subset of R

L which contains
sampling vectors of functions from W over a fixed discrete subset of Ω. The desired output of
the block is an estimation {f̃k}K

k=1 of the coefficients {〈f, φk〉}K
k=1. However, in cases where

it is difficult to work with the spectral basis, one can train an encoder to transform the input
samples to a compressed representation space of dimension K. Also, although the network is
trained on point samples of functions from W , it is able to receive as input a sample vector
~f of a function f which is from a larger subset containing W and approximate the solution.

Since generating a uniform or even quasi-uniform set of locations on a manifold can be chal-
lenging, we emphasize that the advantage of our learning approach is that the samples ~f can
be taken even from a set of random locations on Ω, as long as the set is consistently used for all
initial conditions and is sufficiently dense for the required accuracy. Indeed, our architecture
preserves one of the main advantages of PINNs, that they are grid-free. That is, once trained,
the networks can accept as input any parametric point x ∈ Ω and any time t ∈ [0, T], so as

to provide the grid-free approximation ũ(~f, x, t).

In most cases, it is advantageous to have the choice of the sampling set and the quantities L and
K to be determined by ‘Nyquist-Shannon’-type theorems on the manifold for the given subset
W and the subspace UK = span{φk}K

k=1. In the scenario where W ⊂ UK and the sampling
set of size L is selected to provide perfect ‘Shanon’-type reconstruction, the transformation
block may take the form of a simple linear transformation. In complex cases, where we have
no prior knowledge about the required sampling rate or we do not have perfect reconstruction
from the samples, we train a transformation block C̃ that is optimized to perform a nonlinear
‘projection’ based on a carefully selected training set.

2. Time Stepping Block - In this block we apply a neural network that takes as input the
output of the transformation block C̃(~f), which may be the approximation of the spectral
basis coefficients {f̃k}K

k=1, and a time stamp t, to compute a time dependent representation.

We denote this block as D̃ : RK × [0, T] → RK .

3. Reconstruction Block - In this block we apply an additional neural network on the output
of the time stepping block D̃, together with the given input point x ∈ Ω, to provide an

4

Figure 1: General description of our method

estimate ũ(~f, x, t) of the solution u(x, t) with the initial condition f . We denote this block as
R̃ : RK × Ω → R.

Thus, our method is in fact a composition of the 3 blocks ũ : ~W × Ω × [0, T] → R

ũ(~f, x, t) = R̃(D̃(t, C̃(~f)), x).

Observe that in scenarios where one requires multiple evaluations at different locations {ũ(~f, xi, t)}i,
xi ∈ Ω, at a given time step t ∈ [0, T], one may compute once the output of the time stepping block

D̃(t, C̃(~f)) and use it multiple times for all {xi}i, and in doing so, reduce the total computation
time.

4 Introduction of the spectral PINN for the heat equation

over Ω = [0, 1]

We first review the prototype case of the heat equation on the unit interval where we can provide
rigorous proofs for our method as well as showcase simple realization versions of our spectral network
construction. Recall the heat equation:

ut = αuxx, x ∈ [0, 1], t ∈ [0, 0.5],

with initial time condition:
u(x, t = 0) = f(x), x ∈ [0, 1].

4.1 Architecture and theory for the heat equation over Ω = [0, 1]

The analytic solution to this equation can be computed in 3 steps that are aligned with the 3
blocks of our architecture. Assume the initial condition f : [0, 1] → R has the following spectral
representation

f(x) =

∞∑

k=1

ck sin(2πkx).

5

Next, apply the following transformation on the coefficients for a given time step t

D(t, c1, c2, ...) := (e−4π2αtc1, e
−4π2·22αtc2, ...).

Finally, evaluate the time dependent representation at the point x:

u(x, t) = R(e−4π2αtc1, e
−4π2·22αtc2, ..., x) :=

∞∑

k=1

e−4π2k2αtck sin(2πkx).

We now proceed to provide the details of the numerical spectral PINN approach in this scenario.
First, we select as an example K = 20 and W = W20, where

W20 :=

{
20∑

k=1

ck sin(2πkx), c1, ..., c20 ∈ [−1, 1],
√

c2
1 + ... + c2

20 = 1

}
.

We sample each f ∈ W20 using L = 101 equally spaced points in the segment [0, 1] to compute a

vector ~f . For the training of the networks we use a loss function which is a sum of two loss terms
L0 + LD . The loss L0 enforces the network ũθ with weights θ to satisfy N0 random training initial
conditions

L0(θ) =
1

101N0

N0∑

i=1

100∑

j=0

∣∣∣∣ũθ

(
~fi,

j

100
, 0

)
− fi

(
j

100

)∣∣∣∣
2

. (2)

For the second loss term we randomly generate N = 5, 000 triples (~fi, xi, ti)
N
i=1 and enforce the

model to obey the differential condition

LD(θ) =
1

N

N∑

i=1

∣∣∣∣∣
∂ũθ(~fi, xi, ti)

∂t
− α

∂2ũθ(~fi, xi, ti)

∂x2

∣∣∣∣∣

2

. (3)

The derivatives of the given neural network approximation in (3) are calculated using the automatic
differentiation capabilities of deep learning frameworks. In this work we use TensorFlow [6].

Observe that although we are using in this pedagogical example a uniform grid for the samples
of the initial conditions, as explained in Section 3, the advantage of our learning approach is that
the samples ~f can be taken even from a set of random locations, as long as the set is consistently
used for all initial conditions during training and inference and is sufficiently dense for the required
accuracy.

We compare two PINN architectures that provide an approximation to the solution u:

(i) The naive model - We benchmark our spectral method with a deep learning model which is

based on a standard MLP neural network, that takes in as input (~f, t, x) ∈ R
103 and outputs

an approximation. This model is trained to be PI using the loss function L0 + LD, where the
two terms are defined in (2) and (3). The network is composed of 5 dense layers R103 → R103

and finally a dense layer R103 → R. Each of the first five dense layers is followed by a
non-linear activation function. Typically, a Rectifier Linear Unit (ReLU) σ(x) = (x)+, is a
popular choice as the nonlinear activation for MLP networks [12]. However, it is not suitable
in this case, since its second derivative is almost everywhere zero. Therefore we use tanh as
the nonlinear activation function. Observe that in this paper, the naive PINN model differs
from the classic PINN model reviewed in Subsection 2.1, in that it is trained to approximate
the solution for any initial condition from the given subspace.

(ii) The spectral model - In some sense, our spectral model ũ is ‘strongly’ physics informed.
Exactly as the naive model, it is also trained using the loss functions (2) and (3), to provide
solutions to the heat equation. However, its architecture is different from the naive architec-
ture, in that it is modeled to match the spectral method. The spectral model ũ approximates
u using the 3 blocks of the spectral paradigm approximation presented in the previous section.
We now provide the details of the architecture and support our choice of design with rigorous
proofs

6

1. Sine transformation block This block receives as input a sampling vector ~f and returns
the sine transformation coefficients for {sin(2πk·)}, k = 1, . . . , 20. Due to the high sampling
rate L = 101, compared with the frequency used K = 20, the sampled function f can be
fully reconstructed from ~f and this operation can be realized perfectly using the Nyquist-
Shannon sampling formula. However, so as to simulate a scenario on a manifold where the
sampling formula cannot be applied, we train a network to apply the transformation. To this
end, we created 1, 000 initial value conditions using trigonometric polynomials of degree 20,
and trained this block to extract the coefficients of those polynomials. In other words, we
pre-trained C̃ : R101 → R20 for the following task:

C̃(~f) = (c1, ..., c20),

where ~f is the sampling vector of the function

f(x) =

20∑

k=1

ck sin(2πkx).

In this simple case where Ω = [0, 1], the network can simply be composed of one dense layer
with no nonlinear activation, which essentially implies computing a transformation matrix
from samples to coefficients. As already noted in the introduction, for manifolds such as the
embedded torus (see Section 6), where the spectral basis can only be computed numerically,
or a nonlinear encoder is trained to ‘simulate’ the spectral basis, the architecture of the
transformation block is more complex.

2. Time stepping block The time stepping block should approximate the function:

D(t, c1, ..., c20) = (e−4π2αtc1, e
−4π2·22αtc2, ..., e

−4π2202αtc20). (4)

We consider 2 architectures for this block:

Realization time stepping block:

In the case of the heat equation we know exactly how the time stepping block should operate
and so we can design a true realization. The first layer computes

t → (−4π2αt,−4π222αt, ...,−4π2202αt).

The second layer applies the exponential nonlinearity

(−4π2αt,−4π2 · 22αt, ...,−4π2202αt) → (e−4π2αt, e−4π2·22αt, ..., e−4π2202αt).

Finally, we element-wise multiply the output of the second layer with (c1, ..., c20) to output
the time dependent spectral representation (4).

Approximate time stepping block:

In the case of general manifolds we may not be able to fully realize the time stepping block.
Therefore, we examine what are the consequences of using an MLP network D̃ that approxi-
mates for given K ≥ 1

D(t, c1, ..., cK) := (e−4π2αtc1, ..., e
−4π2K2αtcK).

The fact that the operator D is a composition of analytic components allows us to construct
relatively small approximating NN as we prove in the following theorem (see the appedix for
proofs):

Theorem 2. For any 0 < ε < 1 and K ≥ 1 there exists a MLP network D̃, consisting of
dense layers and tanh as an activation function, with O(K3 + K log2(ε−1)) weights such that

‖D̃(t, c1, ..., cK) − D(t, c1, ..., cK)‖∞ ≤ ε,

for all inputs c1, ..., cK ∈ [−1, 1], t ∈ [0, 1].

7

We remark that it is possible to approximate D using ReLU as the nonlinear activation as
it shown in [13]. However, recall the ReLU is not suitable for our second order differential
loss function (3). In the experiments below, the approximating MLP time stepping block is
composed of 5 layers.

3. Reconstruction Block The reconstruction block should operate as follow:

R(a1,, aK, x) =

K∑

k=1

ak sin(2πkx).

In the case of the heat equation, for given t ∈ [0, 1], the coefficients {ak}K
k=1 are {e−4π2k2tck}K

k=1

or an approximation to these coefficients. Here, also one can design a realization block which
uses the sine function as a nonlinearity. To support the general case we have the following
result

Theorem 3. For fixed A > 0, K ≥ 1 and any 0 < ε < 1, there exists a MLP network R̃,
consisting of dense layers and tanh as an activation function, with O(K2 + K log2(Kε−1))
weights for which

|R̃(a1,, aK, x) −R(a1,, aK, x)| ≤ ε,

where a1, ..., aK ∈ [−A, A], x ∈ [0, 1].

In the experiments below, the approximating MLP reconstruction block is composed of 5 layers.
Using theorem 2 and 3, we can prove a general theorem that provides an estimate for the approxi-
mation of a MLP network. We first give the definition of Sobolev spaces [22]:

Definition 1. Let Ω ⊂ Rn and Cr
0(Ω) be the space of continuously r-differentiable with compact

support functions. For 1 ≤ p < ∞, the Sobolev space W r
p (Ω) is the completion of Cr

0(Ω) with
respect to the norm

‖f‖Wr
p (Ω) =

∑

|α|≤r

‖∂αf‖Lp(Ω),

where ∂αf = ∂|α|f
∂x

α1

1
...∂xαn

n
, |α| = ∑n

i=1 αi.

With this definition at hand we are ready to state a result on the approximation capabilities of
our spectral architecture when MLP networks are used to approximate the spectral realization

Theorem 4. Let r ∈ N. For any 0 < ε < 1 there exists a MLP neural network ũ, with tanh
nonlinearities and O(ε−3/r + ε−1/r log2(ε−(1+1/r))) weights (the constant depends on r) for which
the following holds: For any f ∈ W r

2 ([0, 1]), f =
∑∞

k=1 ck sin(2πkx), ‖f(r)‖2 ≤ 1 and u, the solution
to the heat equation on Ω = [0, 1] with the initial condition f, the network ũ takes the input {ck}K

k=1,
K ≥ cε−1/r and provides the estimate

‖u(f, ·, t)− ũ(f, ·, t)‖L2[0,1] ≤ ε, ∀t ∈ [0, 1].

4.2 Experimental Results

In our experiments we tested 4 PINN models. The first is a naive PINN model with vanilla
MLP architecture consisting of 6 layers. This model accepts as input the samples of the initial
condition, a point x ∈ [0, 1] and time step t and outputs an approximation to the solution. We
then also tested 3 variations of the spectral model with the various blocks realized or approximated.
Training was performed using 5, 000 and 25, 000 samples of the form (~f, x, t), where ~f is a sampling
vector of trigonometric polynomial of degree 20 on 101 equispaced points in the segment [0, 1]
with t ∈ [0, 0.5]. To guarantee slow vanishing of the solution over time we used α = 0.01. The
testing of the 4 models was done using 20 randomly sampled initial conditions. For each model, we
measured the Mean Squared Error (MSE) of the approximated solutions for these initial conditions

8

Model
number
in plots

Model Architecture #Model weights Testing
MSE:
5,000

training
samples

Testing
MSE:
25,000

training
samples

Testing
MSE:
50,000

training
samples

1 Naive Model 53,664 1.3e-4 1.19e-4 N/A

2 Spectral model - full realization
(time stepping and

reconstruction blocks)

2,960 9.0e-6 8.3e-6 N/A

3 Spectral model - MLP
approximation of time stepping

block, realization of
reconstruction block

11,980 5.7e-5 4.9e-5 N/A

4 Spectral model - realization of
time stepping block, MLP

approximation of reconstruction
block

10,401 2.9e-5 2.87e-5 N/A

5 Operator learning ‘Unstacked
DeepONet’ [27]

998,102 N/A N/A 9.81e-5

Table 1: Heat equation over Ω = [0, 1] - Comparison of a standard naive PINN model, 3 variants
of our spherical PINN model and operator learning.

over 500 uniform time steps and 101 uniform locations. We also tested an operator learning model
of the type ‘Unstacked DeepONet’ [27]. This is a network that is trained without knowledge of the
PDE and therefore requires for its training phase ground truth data of the training solutions. A
‘branch’ subnet processes the input samples of the initial condition, a ‘trunk’ subnet processes the
x and t parameters and then the output of these two subnets is further processed to provide the
approximation. We found that operator learning requires a significantly larger network and this
in turn necessitates a larger training set of 50,000 samples. The results are summarized in Table
1. We see that a network that realizes the spectral method performs best. When approximations
replace realization components then they still outperform standard architectures.

In Figure 2 we plot over different time steps, the sums over 20 test cases of mean squared error
between the approximation of the network ũ and the ground truth u.

Error(t) =

20∑

i=1

1

101

√√√√
100∑

k=0

∣∣∣∣ũ
(

~fi,
k

100
, t

)
− u

(
fi,

k

100
, t

)∣∣∣∣
2

.

We show some examples of the exact solution u and the approximations of the different variants of
neural network at different times and with several initial condition in figure 3.

In addition, we performed generalization and stability analysis for the different architectures.
To evaluate the ability of our networks to generalize beyond the training space of polynomials of
degree 20, we tested the different networks using initial conditions from a space of polynomials of
degree 30. Namely,

W30 =

{
30∑

k=1

ck sin(2πkx), c1, ..., c20 ∈ [−1, 1],
√

c2
1 + ... + c2

20 = 1

}
.

To evaluate the stability of our networks, we added normal random noise with mean 0 and variance
0.3 to the initial condition sample vectors and evaluated at different time stamps the following
normalized metric

‖ũ(~f + ~δ, ·, t)− ũ(~f, ·, t)‖2

‖δ‖2
, (5)

9

Figure 2: Heat equation on [0, 1] - Error versus time

Model
number
in plots

Model Architecture MSE

1 Naive Model 1.0e-3

2 Spectral model - full realization (time
stepping and reconstruction blocks)

7.1e-4

3 Spectral model - MLP approximation
of time stepping block, realization of

reconstruction block

8.1e-4

4 Spectral model - realization of time
stepping block, MLP approximation of

reconstruction block

7.4e-4

Table 2: Heat equation on [0, 1] - generalization results

where δi ∼ N(0, 0.3). The results of the generalization test can be found in Table 2, and the results,
averaged over 20 random initial conditions, for the stability test can be found in Table 3. In both
tests, we can observe that all spectral model variants outperform the naive model.

The theoretical and empirical results for the simple case of the heat equation over Ω = [0, 1]
motivate us to establish guidelines for designing spectral PINN networks in much more complicated
scenarios. Namely, we should try to realize the various blocks, approximate them or at the least
design them inspired by the spectral method.

5 The sphere S
2

In this section, we demonstrate our method in a more challenging setup, a nonlinear equation on a
curved manifold. The Allen-Cahn equation over the sphere S2 is defined by [14]:

ut = ε∆u + u − u3, (6)

10

Figure 3: Heat equation over [0,1] - comparisons of the ground truth solution and the different
neural network solutions with different initial conditions and at different times

11

Model
number
in plots

Model Architecture T = 0.2 T = 0.4 T = 0.5

1 Naive Model 3.68 3.82 3.77
2 Spectral model - full realization

(time stepping and
reconstruction blocks)

1.07 0.84 0.78

3 Spectral model - MLP
approximation of time stepping

block, realization of
reconstruction block

1.2 0.99 0.96

4 Spectral model - realization of
time stepping block, MLP

approximation of reconstruction
block

1.07 0.85 0.78

Table 3: Heat equation on [0, 1] - stability test results using the normalized metric (5)
and noise ∼ N(0, 0.3).

where ε > 0 and the Laplace-Beltrami operator is

∆ =
∂2

∂θ2
+

cos θ

sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2
,

with φ is the azimuth angle and θ is the polar angle.

5.1 Theory and spectral PINN architecture for the Allen-Cahn equation

on S
2

On S2 ⊂ R3 the spectral basis is the spherical harmonic functions [9]:

Definition 2. The spherical harmonic function of degree l and order m is given by:

Y m
l (θ, φ) = (−1)m

√
(2l + 1)

4π

(l − m)!

(l + m)!
P m

l (cos θ)eimφ,

where θ ∈ [0, π] is the polar angle, φ ∈ [0, 2π) is the azimuth angle and P m
l : [−1, 1] → R is the

associated Legendre polynomial.

Each spherical harmonic function is an eigenfunction of the Laplace-Beltrami operator satisfying

∆Y m
l = −l(l + 1)Y m

l .

In our work, for simplicity, we use the real version of the spherical harmonics, defined by:

Ylm =

√
2(−1)mIm(Y

|m|
l), −l ≤ m < 0,

Y 0
l , m = 0,√
2(−1)mRe(Y m

l), 0 < m ≤ l.

The inputs to our networks are of type (F, (θ, φ), t), where F ∈ R20×20 is a sampling matrix of the
initial condition on uniform azimuth-polar grid of a spherical function, θ ∈ [0, π], φ ∈ [0, 2π) are
the coordinates of a point on the sphere and t ∈ [0, 1]. The loss functions are similar to the loss
functions used in section 4, with the required modifications, such as for the differential loss term

LD(θ) =
1

N

N∑

i=1

∣∣∣∣
∂ũθ(Fi, xi, ti)

∂t
− (ε∆ũθ + ũθ − ũ3

θ)(Fi, xi, ti)

∣∣∣∣
2

. (7)

12

Our goal is to construct a spectral PINN architecture that will outperform the naive PINN ar-
chitecture. Here are the details of the 3 blocks of the spectral model that follow the blueprint of
Section 3 :

1. Transformation Block

This block receives as input a flatten sampling matrix ~F ∈ R400 of an initial condition f from
the space

9∑

l=0

l∑

m=−l

cl,mYlm(θ, φ).

It returns the 100 spherical harmonic coefficients of degree 9. By [17, Theorem 3] under these
conditions, spherical harmonics of degree 9 can be perfectly reconstructed. Thus, training
one dense linear layer C̃ : R400 → R100, recovers the perfect reconstruction formula

C̃(~F) = (c0,0, c1,−1, c1,0, c1,1, ..., c9,−9, ..., c9,0, ..., c9,9),

2. Time Stepping Block

Unlike the heat equation on the unit interval, the Allen-Cahn equation (6) on the sphere, does
not admit an analytic spectral solution. Nevertheless, we design an architecture that follows
the spectral paradigm and compare it with a standard PINN MLP architecture. We test our
hypothesis by conducting an ablation study using three optional architectures for the time
stepping block:

(a) Input of Allen-Cahn Nonlinear Part

In this architecture, we further adapt the architecture to the nature of the equation,
specifically to the non-linear part of the Allen-Cahn equation. Thus, in this variant,
the input to the time stepping block is composed of: the transformation of the initial
condition, the transformation of the nonlinear part of the initial condition and the time
variable (C̃(~F), C̃(~F − ~F 3), t). Therefore the time stepping block is defined as

D̃ : R
100 × R

100 × [0, T] → R
100,

where

D̃(C̃(~F), C̃(~F − ~F 3), t) = (c0,0(t), c1,−1(t), c1,0(t), c1,1(t), ..., c9,−9(t), ..., c9,0(t), ..., c9,9(t)).

With the additional input of the non-linear part, this variant of the time stepping block
is a sum of two sub-blocks D̃ = D̃1 + D̃2. The component D̃1 is a sub-block designed
to capture an exponential dynamic of the solution across time. The sub-block D̃2 is a
standard PINN sub-block. The exponential sub-block D̃1 is defined by

D̃1(C̃(~F), C̃(~F − ~F 3), t) = eD̃1,1(t) � D̃1,2(C̃(~F), C̃(~F − ~F 3)),

where � is element-wise vector multiplication. The component D̃1,1 : R → R100 is a

simple dense layer with no bias, i.e. D̃1,1(t) = V · t where V ∈ R
100 is a learnable vector.

The component D̃1,2 : R100 × R100 → R100 is an MLP subnetwork with 6 layers with

tanh activations. Finally, the sub-block D̃2 is also an MLP subnetwork with 6 layers
and tanh activations. The full architecture with this time stepping variant is depicted
in Figure 4.

(b) Standard Exponential Block

This variant of the time-stepping block is similar to the one described in (a), but without

the non-linear input C̃(~F− ~F 3). Thus, the subnetwork capturing the exponential behavior
takes the form

D̃1(C̃(~F), t) = eD̃1,1(t) � D̃1,2(C̃(~F)).

In this architecture we add 5 more dense layers to this block, as each layer requires less
weights.

13

Figure 4: Full architecture for spherical setting - the red arrows are used only in variant (a) for
time stepping block

(c) Naive MLP Time Stepping Block

In this variant of the time stepping block, the input is (C̃(~F), t) and the architecture is
a simple MLP block of 12 layers with tanh activation functions.

3. Reconstruction Block

The heuristics of our spectral approach is that the output of the time stepping block should
be (once trained) a representation space resembling the coefficients of the spectral basis at
the given time. Therefore, we design the reconstruction block to be composed of dense layers,
but we use activation functions of the form sinl, cosl, 0 ≤ l ≤ 9, on the input data point (θ, φ),
since these activation functions are the building blocks of the spherical harmonics functions.
To this end, we first apply two subnetworks on the data point (θ, φ)

Rl,sin,0(θ, φ),Rl,cos,0(θ, φ) : R
2 → R

2.

We then apply on their output, component wise, the spectral activation functions

sinl ◦Rl,sin,0(θ, φ), cosl ◦Dl,cos,0(θ, φ), 0 ≤ l ≤ 9.

Next we apply dense layers on the output of the activation functions

Rl,sin,1,Rl,cos,1 : R
2 → R

100, 0 ≤ l ≤ 9.

We assemble these pieces to produce a subnetwork Rloc : R2 → R100

Rloc(θ, φ) =
9∑

l=0

Rl,sin,1(sin
l ◦Rl,sin,0(θ, φ)) �Rl,cos,1(cosl ◦Rl,cos,0(θ, φ)),

where � is element-wise vector multiplication.

We apply separately, on the output of the time stepping block a subnetwork Rd : R
100 → R

100.
Finally, our reconstruction network R̃ is a dot-product between the outputs of Rd and Rloc

R̃(c0,0(t), c1,−1(t), c1,0(t), c1,1(t), ..., c9,−9(t), ..., c9,0(t), ..., c9,9(t), θ, φ)

= 〈Rd(c0,0(t), c1,−1(t), c1,0(t), c1,1(t), ..., c9,−9(t), ..., c9,0(t), ..., c9,9(t)),Rloc(θ, φ)〉.

14

5.2 Experimental Results

We generated training data consisting of N = 5, 000 randomly chosen samples of the form (~F , (θ, φ), t),

where ~F is a flattened sampling matrix of initial conditions randomly sampled from

W =

9∑

l=0

l∑

m=−l

clmYlm(θ, φ), clm ∈ [−1, 1],

√√√√
9∑

l=0

l∑

m=−l

c2
lm = 1

 ,

on the uniform parametric grid

θj =
π

19
j, j ∈ {0, ..., 19}, φk =

2π

20
k, k ∈ {0, ..., 19}.

During the training of the spectral model we used some manipulations to improve the results:

1. Pre-training the transformation block and the reconstruction block separately before training
the full model, using the MSE loss function

1

N

N∑

i=1

∣∣∣F (θi, φi) − R̃(C̃(~Fi), (θi, φi))
∣∣∣
2

.

2. When training the full model, we started the first 20 epochs by freezing the weights of the
transformation and reconstruction blocks that were pre-trained separately in (1) and training
only the time stepping block. We observed that this technique where the transformation block
and the reconstruction are pre-trained and then kept constant for the first epochs provides
better initialization of the time-stepping block and overall better results.

In this stage of the training, we used a loss function containing three terms. In addition to
the standard initial condition loss and the differential loss we added new loss to enforce that
the time stepping block does not change the spherical harmonics coefficients at time zero.
Formally, the new loss term over the training set is

1

100N

N∑

i=1

‖D̃(C̃(~Fi), 0) − C̃(~Fi)‖2
2. (8)

3. Finally, we trained the full model with all 3 loss terms for 25 more epochs.

Since there is no analytical solution for the Allen-Cahn equation over S2, we used the numerical
scheme IMEX-BDF4 [14] as ground truth for testing our models. Unlike [14], we used the spherical
harmonic functions basis and not the double spherical Fourier method which was used in [14] due to
performance considerations. We tested our models using 20 random initial conditions and predicted
the solutions for all grid points:

θj =
π

19
j, j ∈ {0, ..., 19}, φk =

2π

20
k, k ∈ {0, ..., 19}, tn =

1

500
n, n ∈ {0, ..., 500}.

We benchmarked 3 spectral PINN variants of the with the naive PINN model that has MLP
architecture consisting of 26 layers with tanh activations. Table 4 shows the comparison of the 4
models for two cases of the diffusion coefficient in (6) ε = 0.01, 0.001. As in Subsection 4.2, testing
was performed by measuring MSE for the approximated solutions for 20 initial conditions over 500
uniform time steps. We can see that our model achieves better accuracy than the naive model, with
significantly less parameters. We can also see that there is a benefit to the special processing of the
non-linear part of Allen Cahn equation by feeding the time stepping block with the non-linear part
of the initial condition. In Figure 5 we show the norm of the error in different time steps for the
case ε = 0.1. As in the previous example, we performed generalization and stability tests. For the

15

Model
number
in plots

Model Architecture #weights MSE with ε = 0.1 MSE with ε = 0.001

1 Naive Model 4,070,704 1.1e-4 2.1e-4
2 Spectral model, time stepping

variant (a) - Input of
Allen-Cahn nonlinear part

391,186 4.8e-5 6.1e-5

3 Spectral model, time stepping
variant (b) - Standard time
stepping exponential block

452,590 6.7e-5 6.9e-5

4 Spectral model, time stepping
variant (c) - Naive time
stepping dense block

490,682 9.7e-5 8.1e-5

Table 4: Allen-Cahn equation (6) over S2 with ε = 0.1, 0.001 - Comparison of standard naive PINN
model with 3 variants of our spherical PINN model

Model
number
in plots

Model Architecture MSE

1 Naive Model 3.6e-4
2 Spectral model, time stepping variant

(a) - Input of Allen-Cahn nonlinear
part

1.1e-4

3 Spectral model, time stepping variant
(b) - Standard time stepping

exponential block

1.3e-4

4 Spectral model, time stepping variant
(c) - Naive time stepping dense block

1.2e-4

Table 5: Allen-Cahn equation over S2 with ε = 0.1 - generalization test results

generalization test we used random initial conditions from the larger set of spherical harmonics of
degree 14:

WG =

14∑

l=0

l∑

m=−l

clmYlm(θ, φ), clm ∈ [−1, 1],

√√√√
14∑

l=0

l∑

m=−l

c2
lm = 1

 .

For the stability test we used the technique as in the previous section with noise δ ∼ N(0, 0.3)
and the metric (5). The results of generalization and stability tests can be found in tables 5 and 6
respectively (averaged over 20 random initial conditions). Again, we can see that all spectral model
variants outperform the naive model.

Next we compare the training time required for the models. In Figure 6 we see the training
loss over the training epochs for the naive PINN model 1 and the spectral PINN variant 2. The
left hand zoom out plot takes into account the training epochs used by the spectral PINN for the
initial training of the transformation-reconstruction subnetworks and then plots the MSE for the
training of the full spectral network. The right hand side shows the MSE at finer resolution over
the last epochs.

Lastly, we compared our method to a classic PINN approach that trains specific 20 different
neural networks for each of the separate 20 test initial conditions (see Subsection 2.1). These net-
works receive as input a location on the sphere and time step and provide as output an approximate
solution for only the unique initial condition they trained for. Each separate network has 1,467,324
weights and is constructed using 10 dense inner layers. The average MSE of the 20 networks was

16

Figure 5: Allen-Cahn equation over S2 with ε = 0.1 - Error over time of the naive and spectral
variant PINN models on testing dataset

Model
number
in plots

Model Architecture T = 0.4 T = 0.7 T = 1.0

1 Naive Model 3.3 3.29 3.28
2 Spectral model, time stepping variant

(a) - Input of Allen-Cahn nonlinear
part

0.69 0.65 0.65

3 Spectral model, time stepping variant
(b) - Standard time stepping

exponential block

0.79 0.74 0.73

4 Spectral model, time stepping variant
(c) - Naive time stepping dense block

2.9 2.8 2.8

Table 6: Allen-Cahn equation over S2 with ε = 0.1 - stability test results using the normalized
metric (5) and noise ∼ N(0, 0.3).

17

Figure 6: Allen-Cahn equation over S2 with ε = 0.1 - Comparison of training loss over epochs

4.9e-5 which is comparable to the MSE of our spectral method provided in Table 4. Yet, our spec-
tral network model is smaller and provides approximations for any initial condition from the set W
with no additional training. On the other hand, the classic PINNs can be trained for any initial
condition under weaker assumptions. The average training time for each separate classic vanilla
PINN was 42 minutes while for the spectral PINN that can take as input any initial condition from
W it was 103 minutes.

6 The embedded torus T ⊂ R
3

In this section, we demonstrate our method on the embedded torus

T = {((R + r cos θ) cos φ, (R + r cos θ) sin φ, r sin θ)|θ, φ ∈ [0, 2π)} ⊂ R
3.

In this setting, the Laplace-Beltrami operator is [10]

∆T =
1

r2

∂2

∂θ2
− sin θ

r(R + r cos θ)

∂2

∂θ
+

1

(R + r cos θ)2
∂2

∂φ2
.

On this manifold, there is no analytic form of the spectral basis and so coefficients need to be
approximated from given samples of a function as we shall see below. In Figure 7 we see a rendering
taken from [28] of the approximations of some of the first elements of the spectral basis on the torus.

On the torus we demonstrate our spectral PINN method again using the Allen-Cahn equation
(6) with ε = 0.1. As the class of initial conditions we use the set

W =

5∑

k=1

5∑

l=1

ck,l sin(kθ) sin(lφ),

√√√√
5∑

k.l=1

c2
k,l = 1

 .

Note that in this case, the subset of initial conditions is not a subspace of the manifold’s spectral
basis. We sample functions from this set on a uniform parametric grid with Nθ = Nφ = 15.
On the embedded torus one is required to use a numeric approximation of the spectral basis and
we used the finite-elements method implemented in the python package SPHARAPY [11]. The
choice of spectral basis implementation impacts the design of the architecture of the transformation
and reconstruction blocks. We test several options for each block. For the transformation and
reconstruction blocks we consider two options:

1. Numerical Spectral basis blocks - In this option, we first create a dataset of 5,000 triples,
each composed of a sampling matrix of a function f ∈ W , on a uniform parametric grid with
Nθ = Nφ = 15 and two random coordinates (θ, φ) ∈ [0, 2π)2 of a point on the torus. We then
train the transformation and reconstruction blocks separately as follows.

18

Figure 7: Approximation of some of the first elements of the spectral basis on the torus [28]

For the training of the transformation block C̃ we further approximate for each function in
the training set, using its sampling matrix, the (numerical) spectral transformation using
SPHARAPY. The package numerically computes for each set of samples, the first K coeffi-
cients of the spectral basis. Thus, we applied SPHARAPY with K = 225 and used its output
as ground truth to train our transformation block. The block’s architecture is composed of 3
convolution layers followed by one dense layer.

The reconstruction block R̃ in this variant is trained to take as input the coefficients of the
spectral representation and the coordinate (θ, φ) ∈ [0, 2π)2 and approximate the ground truth
function value at this coordinate. The block architecture is a MLP subnet with 15 layers.

2. Auto-Encoder-Decoder blocks - Auto-encoder-decoder architectures are very popular in
deep learning applications [30]. Their goal is to learn compact representation spaces of data.
This is achieved through two networks that are trained simultaneously. The encoder network
takes the input space of dimension M and applies a nonlinear transformation using several
layers into a smaller representation space of dimension K < M . The decoder network then
takes the compressed representation and trains to approximately recover the original M -th
dimensional data or a certain piece of information relating to the original data. As we shall
see, our application is the latter.

The motivation to use the concept of an encoder-decoder architecture in our setting is to pro-
vide an alternative to the the complexity of using numerical approximations of the spectral
basis over manifolds, by learning an alternative useful non-linear transformation into a com-
pact representation. Thus, we train a transformation block C̃ as the encoder together with the
reconstruction block R̃ as a decoder, without using explicitly the spectral representation on
the torus. However, this approach is certainly inspired by the spectral method as we are ulti-
mately optimizing some compressed representation space. The transformation encoder block
simply learns to create a compressed latent representation of dimension K = 150 from the
M = 225 function samples in a representation space. The encoder’s architecture is composed
of 5 convolution layers followed by one dense layer. Then the decoder takes the compressed
representation in dimension K = 150 together with a coordinate (θ, φ) ∈ [0, 2π)2 and tries to
recover the ground truth function value at this coordinate. Its architecture is 17 dense layers.

19

Model number in
plots

Transformation and
Reconstruction blocks

Time stepping block #Weights MSE

1 Naive Model 4,130,001 2.7e-4

2 Numerical spectral basis
blocks

Spectral model, time
stepping variant (a) -
Input of Allen-Cahn

nonlinear part

2,564,105 2.5e-5

3 Auto-encoder-decoder
blocks

Spectral model, time
stepping variant (a) -
Input of Allen-Cahn

nonlinear part

3,800,555 8.3e-5

4 Numerical spectral basis
blocks

Spectral model, time
stepping variant (b)

3,129,976 1.7e-4

Table 7: Allen-Cahn equation over T ⊂ R3 - Comparison of standard naive PINN model with 3
variants of our spherical PINN model

The loss function over the training set is then

1

N

N∑

i=1

∣∣∣R̃(C̃(~Fi), (θi, φi)) − fi(θi, φi)
∣∣∣
2

.

For the time stepping block we test two options

(a) A custom made time stepping block that receives as input the coefficients of the initial con-
dition as well as the coefficients of the nonlinear part and a time step (similar to variant (a)
of the time stepping block in the spherical case from previous section).

(C̃(~F), C̃(~F − ~F 3), t).

Recall that such an architecture aims to be ‘more’ physics aware and adapted to the nature
of the equation. For this variant of the time stepping block we use 9 dense layers.

(b) A network that takes as input

(C̃(~F), t),

without the nonlinear part. Here we used 15 dense layers.

We denote this block as earlier with D̃. For testing of our models, we used the IMEX-BDF4 numeric
solver [14] to obtain approximations of solutions to the equations that we considered as ground truth.
In table 7 we summarize the benchmarks of the various architectures and also compare them to a
naive PINN architecture, with 26 layers, that simply takes in the samples of the initial condition
as well as the time step and location on the torus and outputs an approximation of the value of the
solution.

We can observe that the best result, in terms of accuracy and smaller size of the network, can be
obtained using both numerical spectral basis blocks as transformation and reconstruction blocks,
combined with the non-linear input time stepping block. Also, even the encoder-decoder variant
that ‘follows’ the spectral paradigm to some extent without actually using the numerical spectral
basis, provides a better result than the naive PINN model. In Figure 8 we show time plots of errors
of the different PINN models averaged over 20 random initial conditions. For the generalization
test presented in Table 8, the network that was trained on samples from W was tested on random
initial conditions from the larger set

WG =

10∑

k=1

10∑

l=1

ck,l sin(kθ) sin(lφ),

√√√√
10∑

k.l=1

c2
k,l = 1

 .

20

Figure 8: Allen-Cahn equation over T ⊂ R3 - Error over time of the naive and spectral variant
PINN models on testing dataset

Model
number
in plots

Transformation and Reconstruction
blocks

Time stepping block MSE

1 Naive Model 2.1e-4
2 Numerical spectral basis blocks Spectral model, time

stepping variant (a) -
Input of Allen-Cahn

nonlinear part

9.7e-5

3 Auto-encoder-decoder blocks Spectral model, time
stepping variant (a) -
Input of Allen-Cahn

nonlinear part

1.1e-4

4 Numerical spectral basis blocks Spectral model, time
stepping variant (b)

2.0e-4

Table 8: Allen-Cahn equation over T ⊂ R3 - generalization test results

21

Model
number
in plots

Transformation and
Reconstruction blocks

Time stepping block T = 0.4 T = 0.7 T = 1.0

1 Naive Model 2.4 2.4 2.5
2 Numerical spectral basis

blocks
Spectral model, time
stepping variant (a) -
Input of Allen-Cahn

nonlinear part

0.66 0.60 0.63

3 Auto-encoder-decoder
blocks

Spectral model, time
stepping variant (a) -
Input of Allen-Cahn

nonlinear part

0.21 0.21 0.22

4 Numerical spectral basis
blocks

Spectral model, time
stepping variant (b)

0.91 0.83 0.79

Table 9: Allen-Cahn equation over T ⊂ R3 - stability test results using the normalized metric (5)
and noise ∼ N(0, 0.3)

Figure 9: Allen-Cahn equation over T ⊂ R3 - Comparison of training loss over epochs.

The stability tests listed in Table 9 are averaged over 20 random initial conditions.
Next we compare the training time required for the models. In Figure 9 we see the training

loss over the training epochs for the naive PINN model 1 and the spectral PINN variant 2. The
left hand zoom out plot takes into account the training epochs used by the spectral PINN for the
initial training of the transformation-reconstruction subnetworks and then plots the MSE for the
training of the full spectral network. The right hand side shows the MSE at finer resolution over
the last epochs.

Finally, we tested the impact the spectral dimension K has on the accuracy and the training
time. In Figure 10 we see how our spectral model (variant 2) improves with higher spectral degrees
as the training time increases.

7 Conclusions and future work

In this work we presented a physics informed deep learning strategy for building PDE solvers over
manifolds which is aligned with the method of spectral approximation. Our method allows to train
a model that can take as input initial conditions from a pre-determined subset or subspace and is
grid free. Our PI networks are designed to be aligned with the powerful spectral methods, where
on each manifold we employ the appropriate spectral basis of the Laplace-Beltrami operator, or an
alternative encoder-decoder framework that simulates the ‘compression’ properties of the spectral

22

Figure 10: Allen-Cahn equation over T ⊂ R3 - Comparisons of accuracy error and training time
with different spectral dimension K.

basis. Through extensive experimentation we empirically demonstrate that our spectral PINNs
provide better approximation with much less weights compared with standard PINN architectures.
For the case of the heat equation over the unit interval we provided a rigorous proof for the degree
of approximation of a spectral PINN based on MLP components.

We believe that the work establishes the validity of our spectral approach for interpolation,
where the models are trained to take as input any initial condition from the given subspace, any
point on the manifold and any time step. At this point we have not designed and tested the models
for extrapolation, such that training using time steps from t ∈ [0, 0.5] and testing on t ∈ (0.5, 1].
We shall do so in future work.

ACKNOWLEDGMENTS The authors deeply thank the reviewers for their numerous helpful
comments and suggestions that have significantly improved the paper.

References

[1] B. Gustafsson, H. Kreiss & J. Oliger, Time dependent problems and difference methods, John
Wiley & Sons, 1995.

[2] A. Tveito & R. Winther, Introduction to partial differential equations: a computational ap-
proach, Springer Science & Business Media, 2004.

[3] L. Bar, & N. Sochen, Unsupervised deep learning algorithm for PDE-based forward and inverse
problems, arXiv preprint, 2019.

[4] M. Raissi, P. Perdikaris & G. Karniadakis, Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational physics 378 (2019), 686-707.

[5] O. Ovadia, A. Kahana, E. Turkel & S. Dekel, Beyond the Courant-Friedrichs-Lewy condi-
tion: Numerical methods for the wave problem using deep learning, Journal of Computational
Physics 442 (2021), 110493.

[6] https://www.tensorflow.org/guide

[7] https://pytorch.org/tutorials/

23

[8] A. Grigoryan, Heat kernel and analysis on manifolds, American Mathematical Soc. 47, 2009.

[9] K. Atkinson & W. Han, Spherical harmonics and approximations on the unit sphere: an
introduction, Springer Science & Business Media, 2012.

[10] H. Volkmer, The Laplace-Beltrami operator on the embedded torus, Journal of Differential
Equations 271 (2021), 821-848.

[11] U. Graichen, R. Eichardt & J. Haueisen, SpharaPy: A Python toolbox for spatial harmonic
analysis of non-uniformly sampled data, SoftwareX 10 (2019)

[12] X. Glorot, A. Bordes, Y. & Bengio, Deep sparse rectifier neural networks, In Proceedings of
the fourteenth international conference on artificial intelligence and statistics, 2011, 315-323.

[13] H. Montanelli, H. Yang & Q. Du, Deep ReLU networks overcome the curse of dimensionality
for bandlimited functions, Journal of computational mathematics 39 (2021), 801-815.

[14] H. Montanelli & Y. Nakatsukasa, Fourth-order time-stepping for stiff PDEs on the sphere,
SIAM Journal on Scientific Computing 40 (2018), A421-A451.

[15] H. Mhaskar, Neural networks for optimal approximation of smooth and analytic functions,
Neural computation 8 (1996), 164-177.

[16] M. Bronstein, J. Bruna, Y. LeCun, A. Szlam & P. Vandergheynst, Geometric deep learning:
going beyond euclidean data, IEEE Signal Processing Magazine 34 (2017), 18-42.

[17] J. Driscoll & D. Healy, Computing Fourier transforms and convolutions on the 2-sphere, Ad-
vances in applied mathematics 15 (1994), 202-250.

[18] A. Baydin, B. Pearlmutter, A. Radul & J. Siskind, Automatic differentiation in machine learn-
ing: a survey. Journal of Marchine Learning Research 18 (2018), 1-43.

[19] A. Kashefi & T. Mukerji, T. (2022), Physics-Informed PointNet: A Deep Learning Solver for
Steady-State Incompressible Flows and Thermal Fields on Multiple Sets of Irregular Geome-
tries, arXiv preprint, 2022.

[20] G. Karniadakis, I. Kevrekidis, L. Lu, P. Perdikaris, S. Wang & L. Yang, Physics-informed
machine learning, Nature Reviews Physics 3 (2021), 422-440.

[21] S. Zafeiriou, M. Bronstein, T. Cohen, O. Vinyals, L. Song, J. Leskovec & M. Gori, Non-
Euclidean Machine Learning, IEEE Transactions on Pattern Analysis and Machine Intelligence
44 (2022), 723-726.

[22] R. DeVore & G. Lorentz, Constructive approximation, Springer Science & Business Media,
1993.

[23] Z. Li, N. Kovachki, K. Azizzadenesheli, A. Stuart & A. Anandkumar, Fourier neural operator
for parametric partial differential equations, in Proc. ICLR (2020), 1-16.

[24] M. Xia, L. Böttcher & T. Chou, Spectrally Adapted Physics-Informed Neural Networks for
Solving Unbounded Domain Problems, arXiv preprint, 2022.

[25] M. Rafio, G. Rafio & G. Sang Choi, DSFA-PINN: Deep Spectral Feature Aggregation Physics
Informed Neural Network, IEEE Access 10 (2022), 22247-22259.

[26] B. Lütjens, C. Crawford, M. Veillette & D. Newman, Spectral PINNs: fast uncertainty prop-
agation with physics-informed neural networks, DLDE Workshop, NeurIPS 2021.

[27] L. Lu, P. Jin, G. Pang, Z. Zhang & G. Karniadakis, Learning nonlinear operators via DeepONet
based on the universal approximation theorem of operators, Nature Machine Intelligence 3
(2021), 218-229.

24

[28] S. Chen, M. Chib & J. Wub, High-order algorithms for solving eigenproblems over discrete
surfaces, arXiv preprint arXiv:1310.4807, 2013.

[29] B. Meuris, S. Qadeer & P. Stinis, Machine-learning-based spectral methods for partial differ-
ential equations, Scientific Reports 13 (2023), 1739.

[30] D. Bank, N. Koenigstein & R. Giryes, Autoencoders, arXiv,
https://arxiv.org/pdf/2003.05991.pdf.

A Appendix

Proof of theorem 2. To approximate D, we first build two types of MLP sub-networks. The first
one M , approximates the multiplication

(x1, x2) → x1x2, x1, x2 ∈ [−1, 1].

We also assume we have MLP sub-networks Ek, 1 ≤ k ≤ K, that approximate

e−4π2k2αt, t ∈ [0, 1].

Our MLP network D̃ can then be implemented as the following feed forward composition

t
c1

c2

...
cK

→

c1

...
cK

E1(t)
E2(t)

...
EK(t)

→

M(c1, E1(t))
M(c2, E2(t))

...
M(cK−1, EK−1(t))

M(cK , EK(t))

.

Let us assume that our sub-networks satisfy

|M(x1, x2) − x1x2| ≤
ε

2
, ∀x1, x2 ∈ [−1, 1], (9)

|Ek(t) − e−2π2k2t| ≤ ε

2
, 1 ≤ k ≤ K, , t ∈ [0, 1]. (10)

Then,

|M(ck, Ek(t)) − ck · e−4π2k2αt| ≤ |M(ck, Ek(t)) − ck · Ek(t)| + |ck · Ek(t) − ck · e−4π2k2αt|
≤ ε

2
+ |ck|

ε

2

≤ ε.

This immediately implies that

‖D̃(t, c0, ..., cK) − D(t, c0, ..., cK)‖∞ ≤ ε.

It remains to construct the MLP sub-networks M and Ek, 1 ≤ k ≤ K. Our main tool is Theorem 2.3
in [15] which provides the following special case. Assume f : Cd → C is analytic in the poly-ellipse
defined for ρ ≥ 1

Eρ :=

{
(z1, . . . , zd) ∈ C

d :

∣∣∣∣zj +
√

|zj|2 − 1

∣∣∣∣ ≤ ρ, 1 ≤ j ≤ d

}
.

25

Then, for any ρ1 < ρ there exists a constant c(ρ1 , ρ) > 0, such that for any n ≥ 1 there exist
coefficients {aj}n

j=1, vectors in R
d, {vj}n

j=1 and a bias b ∈ R, such that

∥∥∥∥∥∥
f −

n∑

j=1

aj tanh(vj · +b)

∥∥∥∥∥∥
L∞[−1,1]d

≤ cρ−n1/d

1 max
z∈Eρ

|f(z)|. (11)

The first application of this result, for the case f(x1, x2) = x1x2, implies that for any n ≥ 1, there
exists a subnetwork of two layers Mn, with O(n) parameters, which satisfies

max
x1,x2∈[−1,1]

|x1x2 − Mn(x1, x2)| ≤ ce−n1/2

.

Setting
c

en1/2
=

ε

2
,

implies we should choose

n = log2 2c

ε
.

We conclude there exists a subnetwork M , with O(log2(ε−1)) weights that provides the approxima-
tion (9).

Similarly, for any 1 ≤ k ≤ K, we can apply (11) for f(t) = e−2π2k2αt, to obtain the estimate for
subnetworks with n parameters Ek,n

max
t∈[0,1]

|e−2π2k2αt − Ek,n(t)| ≤ ce2π2k2αρ−n, 1 ≤ k ≤ K.

Thus, we may construct subnetworks {Ek}K
k=1 with O(K2 + log(ε−1)) weights which provide the

approximation (10).
We conclude that by assembling the subnetworks, we can construct the network D̃ with O(K3 +

K log2(ε−1)) weights that provides the required approximation.

Proof of theorem 3. The technique of the proof is similar to the method of proof of Theorem 2. We
use (11) to obtain an estimate for subnetworks Sk,n, 1 ≤ k ≤ K each of O(n) weights, satisfying

max
x∈[0,1]

| sin(2πkx) − Sk,n(x)| ≤ ce2πk−n.

So, it is possible to construct subnetworks Sk, 1 ≤ k ≤ K, each with O(K + logK + ε−1) =
O(K + ε−1) weights such that

max
x∈[0,1]

| sin(2πkx) − Sk(x)| ≤ ε

2K
.

We require a multiplication subnetwork M as in the proof of Theorem 2. However, this time,
assuming that for sufficiently small ε > 0, the outputs of the subnets {Sk}K

k=1 are in [−2, 2]. Since
these are inputs to the multiplication network, we construct a subnetwork with O(log2(Kε−1))
weights that satisfies

|M(x1, x2) − x1x2| ≤
ε

2K
, ∀x1, x2 ∈ [−2, 2], . (12)

We assemble the subnetworks to construct an approximating MLP network with O(K2+K log2(Kε−1))
weights

R̃(a1, . . . , aK, x) :=

K∑

k=1

M(ak, Sk(x)).

26

Finally, we obtain the required estimate by

∣∣∣∣∣
K∑

k=1

ak sin(2πkx) − R̃(a1, . . . , aK, x)

∣∣∣∣∣ =

∣∣∣∣∣
K∑

k=1

ak sin(2πkx) −
K∑

k=1

M(ak, Sk(x))

∣∣∣∣∣

≤
∣∣∣∣∣

K∑

k=1

ak sin(2πkx) −
K∑

k=1

akSk(x)

∣∣∣∣∣ +

∣∣∣∣∣
K∑

k=1

akSk(x) −
K∑

k=1

M(ak, Sk(x))

∣∣∣∣∣

≤ K
ε

2K
+ K

ε

2K
≤ ε.

Proof of theorem 4. It is well known that the Fourier series has the ‘spectral approximation’ prop-
erty. Namely, for a Sobolev function g ∈ W r

2 [0, 1], with the Fourier expansion g =
∑∞

k=−∞ ĝ(k)e2πikx,
we can estimate the error of the truncated Fourier expansion:

∥∥∥∥∥g −
K∑

k=−K

ĝ(k)e2πikx

∥∥∥∥∥

2

2

=

∥∥∥∥∥
∞∑

k=−∞

ĝ(k)e2πikx −
K∑

k=−K

ĝ(k)e2πikx

∥∥∥∥∥

2

2

=

∥∥∥∥∥∥
∑

|k|>K

ĝ(k)e2πikx

∥∥∥∥∥∥

2

2

=
∑

|k|>K

|ĝ(k)|2 =

≤
∑

|k|>K

(|2πk|
K

)2r

|ĝ(k)|2

≤ K−2r
∞∑

k=−∞

|2πk|2r|ĝ(k)|2

= K−2r
∞∑

k=−∞

|ĝ(r)(k)|2 = K−2r‖g(r)‖2
2.

Thus, for g =
∑∞

k=1 gk sin(2πkx), g ∈ W r
2,[0,1], ‖g(r)‖2 ≤ 1, we obtain

‖g −
K∑

k=−K

ĝ(k)e2πikx‖2 ≤ K−r.

This implies that for any initial condition function f =
∑∞

k=1 ck sin(2πkx), f ∈ W r
2,[0,1], ‖f(r)‖2 ≤ 1

and t ∈ [0, 1], we may approximate the solution u(f, x, t) to the heat equation by

‖u(f, ·, t)− uK(·, t)‖2 ≤ K−r, uK(x, t) :=

K∑

k=1

cke−4π2k2t sin(2πkx).

For the given ε and r ≥ 1, we select

K :=

(
3

ε

)1/r

,

which gives

‖u(f, ·, t)− uK(·, t)‖2 ≤ ε

3
, (13)

uniformly for all initial conditions from our Sobolev ball and all times t ∈ [0, 1]. With this choice
of K, we construct the following two networks

27

1. Using Theorem 2, we may construct for ε̃ := ε/(3K) a block D̃ containing

O(K3 + K log2(ε̃−1)) = O(K3 + K log2(Kε−1)) = O(ε−3/r + ε−1/r log2(ε−(1+1/r)))

weights that satisfies

‖D̃(t, c1, ..., cK) − D(t, c1, ..., cK)‖∞ ≤ ε

3K
. (14)

2. Based on (14), for sufficiently small ε > 0, the output of D̃ is a vector in [−2, 2]K, since
it approximates the output of D which is a vector in [−1, 1]K. Using Theorem 3 we may
construct a block R̃ containing

O(K2 + K log2(Kε−1)) = O(ε−2/r + ε−1/r log2(ε−(1+1/r)))

weights that satisfies

|R̃(a1,, aK, x)−R(a1,, aK, x)| ≤ ε

3
, ∀ak ∈ [−2, 2], 1 ≤ k ≤ K, x ∈ [0, 1].

Our approximating solution is then defined by ũ(f, x, t) := R̃(D̃(t, c1, . . . , cK), x), where the network
contains a total of O(ε−3/r + ε−1/r log2(ε−(1+1/r))) weights. We can estimate the approximation by

‖u(f, ·, t)− ũ(f, ·, t)‖2 ≤ ‖u(f, ·, t)− uK(·, t)‖2 + ‖uK(·, t) − ũ(f, ·, t)‖2. (15)

Applying (13) provides the bound ε/3 for the first right hand side term in (15). We now proceed
to bound the second term by 2ε/3 using the the simple inequality ‖g‖L2[0,1] ≤ ‖g‖L∞[0,1]. To this
end for any x ∈ [0, 1]

|uK(x, t)− ũ(f, x, t)| =
∣∣∣R(D(t, c1, ..., cK), x) − R̃(D̃(t, c1, ..., cK), x)

∣∣∣

≤
∣∣∣R(D(t, c1, ..., cK), x) −R(D̃(t, c1, ..., cK), x)

∣∣∣ +
∣∣∣R(D̃(t, c1, ..., cK), x) − R̃(D̃(t, c1, ..., cK), x)

∣∣∣

≤ K
ε

3K
+

ε

3
=

2ε

3
.

28

