
SPARSE BESOV SPACE ANALYSIS OF DEEP LEARNING

REPRESENTATION LAYERS IN HIGH DIMENSIONS

IDO BEN-SHAUL, SHAI DEKEL, AND OREN ELISHA

Abstract. It is known that it is not possible to characterize the ap-
proximation spaces of deep learning models using classic smoothness
spaces [19]. Furthermore, many problems solved by deep learning are
high dimensional where classical function spaces such as the isotropic
Besov spaces are somewhat inadequate. In this paper we try to shed
some light on this problem by analyzing the dynamics of sparse Besov
function smoothness of representations across the layers of a deep neural
network, during and after training. We justify our approach by extensive
experiments demonstrating that in well-performing trained networks,
the sparse Besov smoothness of the training set, measured in the corre-
sponding hidden layer feature map representation, increases from layer
to layer. Our approach also serves as a unifying platform for the analy-
sis of signal processing, classic machine learning tree-based models and
deep learning.

1. Introduction

In recent years there has been growing interest and much research on the
topic of the ‘mathematics of deep learning’. While deep learning (DL) ex-
hibits overwhelming effectiveness in many challenging problems in computer
vision and natural language processing, the deep neural networks themselves
are considered by many as mysterious black boxes. Thus, there is ongoing
significant research efforts to find a theory to explain this success using sta-
tistics, dynamical systems, compositionality classes, approximation theory
and more (e.g. [20, 32, 19, 29, 2]). However, most of the proposed theories
do not present a unified approach to the three pillars of data processing
which are: signal processing, classic machine learning models (e.g. decision
trees, random forest, gradient boosting) and deep learning. Quite often data
scientists struggle to understand when does deep learning provide an advan-
tage over the simpler machine learning models (e.g. tree-based models).
There is some folklore knowledge that DL does not provide any advantage
for most tabular data, but this phenomena is not well understood [31]. In
this work we advocate to model datasets as samples of functions and then

1991 Mathematics Subject Classification. 41A25,41A63,65D40,68T07.
Key words and phrases. Mathematical foundations of deep learning, representation

learning, deep learning approximation spaces.

1

2 I. BEN-SHAUL, S. DEKEL, AND O. ELISHA

estimate the weak type smoothness of these functions using sparse tree-
based Besov spaces. We also characterize this type of smoothness using an
equivalent form of sparsity of wavelet decompositions of tree representations.
This allows us to link the well established approximation theory of signal
theory [16, 17], the theory of classical tree-based machine learning models
[13] and the approximation theoretical potential of DL. We advocate that
in cases where the input function has low ‘weak-type’ smoothness, the role
of a feed-forward neural network is to perform automatic feature engineer-
ing which improves the smoothness of the representations as we go deeper
through the layers of the network. In Figure 1 we see a visualization of
the feature space of two famous datasets: Titanic and MNIST. The Titanic
dataset is composed of tabular data where the passenger features are: age,
gender, class of ticket, port of boarding, etc. and then the response variable
is the binary survival outcome. The MNIST dataset is composed of 28× 28
grayscale images, each containing a hand-written digit and each labeled: ‘0’
to ‘9’. Although the feature spaces of the samples of the two datasets are
high-dimensional, they are depicted colored with their label using a nonlin-
ear dimension reduction algorithm. Roughly speaking, the tabular Titanic
dataset has more cluster structures in the feature space, while the feature
space of MNIST seems very unstructured. We argue that while DL is not
needed for the Titanic dataset, the role of DL for the MNIST dataset is to
unravel the feature space and improve it layer by layer, where at each layer
clustering improves as shown in Figure 2. Consequently, the smoothness
of the dataset improves across layers in the corresponding representation
spaces.

Let us provide more details for this process: Assume we are presented
with a set of gray-scale images of dimension

√
n0 ×

√
n0 with L class labels.

Assume further that a DL network has been successfully trained to clas-
sify these images with relatively high accuracy. This allows us to extract
the representation of each image in each of the hidden layers. To create
a representation at layer 0, we concatenate the

√
n0 rows of pixel values

of each image, to create a vector of dimension n0. We also normalize the
pixel values to the range [0, 1]. Since we advocate a function-theoretical
approach, we transform the class labels into vector-values in the space R

L

by assigning the l-th label to the l-th standard basis vector, so the first
class to (1, 0, · · ·), the second class to (0, 1, 0, · · ·), etc. Thus, the images
are considered as samples of a function f0 : [0, 1]n0 → RL. Typically, for
non-tabular data, such as in computer vision problems, there is no hope that
there exists geometric clustering of the classes in this initial feature space
and that f0 has sufficient ‘weak-type’ smoothness. Thus, a transform into
a different feature space is needed. We associate with each k-th layer of a
DL network, a function fk : [0, 1]nk → RL where the samples are vectors
created by normalizing and concatenating the feature maps computed from
each of the images. Interestingly enough, although the series of functions fk

are embedded in different dimensions nk, through the simple normalizing of

SPARSE BESOV SPACE ANALYSIS OF DEEP LEARNING 3

� � � � � � � � � � � 	

 � �
 � � � � � � � � �

 � � � � � � � � � � � � � �
� � � � � � � � � �
 � � � � � � � � �

� � � � � �
 � � � � � � � ! � � � � �

Figure 1. Visualization of input feature spaces: MNIST
dataset and Titanic dataset

Figure 2. Improved clustering

the features, our method is able to assign smoothness indices to each layer
that are comparable. We claim that for well performing networks, the rep-
resentations in general ‘improve’ from layer to layer and that our method
mathematically quantifies the phenomena that is rendered in Figure 2.

The paper is organized as follows: In Section 2 we present some basic
DL architectures and discuss the problem of the characterization of DL ap-
proximation spaces. In Section 3 we review our sparse smoothness analysis
machinery which is the Wavelet Decomposition of Random Forest (RF) [18].
In Section 4 we present the required sparse geometric function space theo-
retical background. Since we are comparing different representations over
different spaces of different dimensions, we add to the theory presented in
[18] relevant ‘dimension-free’ results. In Section 5 we show how to apply the

4 I. BEN-SHAUL, S. DEKEL, AND O. ELISHA

theory in practice. Specifically, we use a high dimensional sparse general-
ization of the equivalence of wavelet sparsity formulation and sparse Besov
semi-norms. This allows us to numerically estimate a sparse Besov ‘weak-
type’ smoothness index of a given function in any representation space (e.g
hidden layer). Section 6 provides experimental results that demonstrate how
our theory is able to explain empirical findings in various scenarios.

2. Deep Learning approximation models

2.1. Deep Learning Architectures. The two main applications in clas-
sical machine learning are regression and classification. To obtain a unified
approach, we convert the classification problems into vector-valued regres-
sion problems as follows. For classification tasks, where each input is mapped
into one of L classes, we assign to each class 1 ≤ l ≤ L, the standard basis
vector el. This vector valued formulation assures that there is no bias, as
the distances in R

L between the class vector representations are equivalent.
Neural network architectures can be highly complex, but in this paper we

focus on three simple models:

(i) Multilayer Perceptron (MLP) - An MLP network is a forward feed

network f̃ : R
n → R

L

(2.1) f̃ = Φ(σK ◦ TK ◦ . . .σ1 ◦ T1),

where each Tk is an affine linear transformation, Tk : Rnk → Rnk+1 ,
Tk(xk) = Mkxk + bk, and the functions σk are pointwise nonlinear
activation functions. One of the most popular nonlinear activation
functions is the Rectified Linear Unit (ReLU)

(2.2) ReLU(x) :=

{

0, −∞ < x < 0,

x, 0 ≤ x <∞.

Observe that an MLP network (2.1), with σk =ReLU, 1 ≤ k ≤ K,
imposes a piecewise linear approximation over polyhedral subdo-
mains in the input feature space.

Typically, in classification problems, the last layer is of dimension
L and the function Φ in (2.1) is the softmax

Φ(x1, · · · , xL) =
1

∑L
i=1 e

xi

(ex1, ex2, · · · , exL),

which ‘normalizes’ the output of the network to be a vector whose
components are in the range [0, 1] and sum up to one. This design fa-
cilitates training the network to output the probabilities of a sample
to belong to each of the L classes.

(ii) Convolution Neural Network (CNN) - A convolutional layer is in fact
a special case of an MLP layer, where the linear transformation Mk

is broken up to a finite number of compactly supported convolutional

SPARSE BESOV SPACE ANALYSIS OF DEEP LEARNING 5

operations on the input to the layer. This is useful if we are expecting
‘local’ correlations in the input and in some cases allows to reduce
the number of network weights substantially. Applying convolutions
requires to maintain the shape of the input signal through the layers.
So for example, if the input is an image, the layers will be three
dimensional, as a stack of two-dimensional ‘feature maps’ and the
convolutions applied to the input layer k will be three dimensional.
The dimension of the stack of two-dimensional ‘feature maps’ in
the output layer k+1 is equal to the number of convolutions applied
between the layers, where each convolution produces a ‘feature map’.

(iii) Multiplicative Neural Network - Multiplicative networks provide a
platform for a polynomial type of nonlinearity which has been found
to be extremely powerful in the form of attention mechanisms as part
of the Transformer network architectures [28]. Here we describe one
useful variant which can be regarded as a multiplicative network of
degree 2. Let xk ∈ R

nk be an input vector to the k-th layer. For
each component 1 ≤ i ≤ nk+1 of the layer output xk+1 ∈ Rnk+1 , one
selects as part of the architecture two predetermined indices of the
input space 1 ≤ j1(i), j2(i) ≤ nk, such that for 1 ≤ i ≤ nk+1,

xk+1(i) = Ak(i)xk(j1(i))xk(j2(i)) +

nk
∑

j=1

Mk(i, j)xk(j) + bk(i),

where the vector Ak ∈ Rnk+1 is an additional set of network pa-
rameters. In this variant, there is no additional nonlinearity applied
as part of the transformation between layers. The multiplicative
structure of degree 2 is extremely useful in efficient representation of
multivariate polynomials, leading to superior approximation prop-
erties over regular MLP networks. Also, one can regard one of the
inputs to the multiplication, for example xk(j1(i)), as an adaptive
context, or attention for the second input xk(j2(i)). This can be
regarded as an adaptive generalization of MLP, where the weights
depend on the input.

2.2. Deep Learning Approximation Spaces. One of the main goals of
approximation theory is the characterization of the approximation spaces
of an approximation algorithm using function spaces [15]. To this day, the
characterization of deep learning approximation is still out of reach [19].
Still, one can certainly prove Jackson-type theorems that bound the degree
of approximation using smoothness norms such as Sobolev or Besov. To this
end, we first recall the Sobolev space W r

p (Ω), 1 ≤ p ≤ ∞, Ω ⊆ Rn, consisting
of functions with distributional derivatives up to order r satisfying

‖f‖W r
p (Rn) :=

∑

|α|≤r

‖∂αf‖Lp(Ω) <∞.

6 I. BEN-SHAUL, S. DEKEL, AND O. ELISHA

The semi-norm is given by

|f |W r
p (Rn) = |f |r,p :=

∑

|α|=r

‖∂αf‖Lp(Ω).

In this work we are focused on cases where the dimension n is large, since
even the simplest classification network trained on a computer vision dataset
consisting of very small images of size 32× 32, produces inner layer dimen-
sions of up to n = 16, 000 − 64, 000 neurons. However, when trying to
approximate using a network functions from the unit ball of W r

p ([0, 1]n),
one encounters the ‘curse of dimensionality’. That is, in the worst case, ap-
proximation with error ε > 0, requires a network of size ∼ ε−n/r (e.g. there
are lower bounds [34, 33]). In contrast, the following result demonstrates,
that with additional mild conditions, the size of the network may depend
linearly or quadratically on the dimension n (see definitions in Subsection
2.1). These results are useful in cases where n >> r, that is, the dimension
is relatively higher than the given smoothness.

Theorem 2.1. [4] Let n ≥ 2, r ∈ N, f ∈W r
2 (Rn) such that ‖f̂‖L1(Rn) <∞,

where f̂ is the Fourier transform of f and 0 < ε ≤ 1. Then there exist:

(i) A deep MLP network f̃MLP with ReLU activations, of depth O(n2ε−2/r)

and O(n2ε−(2+2/r)) neurons, such that

‖f − f̃MLP‖L2([0,1]n) ≤ cmax(|f |2r,2, ‖f̂‖1)ε.

(ii) A deep multiplicative network f̃MUL of depth O(nε−1/r) and O(nε−(2+1/r))
neurons, such that

‖f − f̃MUL‖L2([0,1]n) ≤ cmax(|f |2r,2, ‖f̂‖1)ε.

Returning to our discussion of the characterization of the approximation
spaces, the main difficulty lies with the inverse embedding. It is not trivial to
conclude the smoothness of a given function from the behavior of the degree
of DL approximation. Let us provide the well-known counter-example of the
‘sawtooth’ functions (see also [12] for a more in depth discussion).

Let ∆1 : R → [0, 1] be defined by

(2.3) ∆1(x) :=











2x, 0 ≤ x < 1/2,

−2x+ 2, 1/2 ≤ x ≤ 1,

0, else.

We then define ∆j := ∆j−1 ◦ ∆1, for j ≥ 2. The sawtooth function ∆j has
2j−1 ‘teeth’, as depicted in Figure 3. The function ∆1 has the following
representation

∆1(x) := 2(x)+ − 2(2x− 1)+ + 2(x− 1)+

= σ(2x)− 2σ(2x− 1) + σ(2x− 2),

SPARSE BESOV SPACE ANALYSIS OF DEEP LEARNING 7

where σ is the ReLU nonlinear activation. Therefore, it can be realized
using a network block composed of two MLP layers

x→ (2x, 2x, 2x)+ (0,−1,−2) → σ → (x1, x2, x3) → x1 − 2x2 + x3.

This implies that ∆j, j ≥ 1, can be realized as a composition of j blocks,
which is a network of depth 2j.

We would like to quantify the ‘weak-type’ smoothness of the representa-
tion layers of the sawtooth family. To this end recall that for a function
f ∈ Lτ (Ω), 0 < τ ≤ ∞, h ∈ R

n and r ∈ N, we have the r-th order difference
operator

∆r
h(f, x) = ∆r

h(f,Ω, x) :=

r
∑

k=0

(−1)r+k

(

r
k

)

f(x+ kh),

where we assume the segment [x, x+ rh] is contained in Ω. Otherwise, we
set ∆r

h (f,Ω, x) = 0. The modulus of smoothness of order r is defined by

ωr (f, t)τ := sup|h|≤t ‖∆r
h (f,Ω, ·)‖Lτ (Ω) , t > 0,

where for h ∈ Rn, |h| denotes the norm of h. We also denote

(2.4) ωr (f,Ω)τ := ωr

(

f,
diam (Ω)

r

)

τ

.

We also recall a subset of the classic Besov spaces defined by functions in
Lτ (Ω), 0 < τ <∞, for which

(2.5) |f |Bα
τ (Ω) :=

(
∫ ∞

0

(

t−αωr(f,Ω, t)τ

)τ dt

t

)1/τ

<∞,

with α > 0, r ≥ bαc + 1. The (quasi-)norm is then defined by

‖f‖Bα
τ (Ω) := ‖f‖Lτ (Ω) + |f |Bα

τ (Ω).

It can be shown [19] that for any α < 1/τ

(2.6) |∆j|Bα
τ
∼ 2jα.

This is a pro-typical example of a function that, one the one hand, has
a compositional structure, that allows it to be represented by a relatively
shallow network of depth ∼ j and yet its Besov smoothness semi-norm is
exponentially larger with j. That is, when initially inspecting the smooth-
ness of the input function, it is not obvious that it can be approximated or,
as in this special case, even realized, by a relatively shallow network.

In going further, let us denote by EN(f)p the degree of approximation of
a neural network with width of size ∼ n and depth of size N of a function
f ∈ Lp([0, 1]n). Let us recall the approximation space Aγ

∞(Lp), defined by
functions in Lp for which

|f |Aγ
∞(Lp) := sup

N
N γEN(f)p <∞.

8 I. BEN-SHAUL, S. DEKEL, AND O. ELISHA

Figure 3. Sawtooth function ∆4

Since ∆j can be realized by a network of width 3 and 2j layers, we have
that

EN(∆j)p ∼
{

1, N < j/2,

0, N ≥ j/2.

Therefore

|∆j|Aγ
∞(Lp) ∼ jγ .

Combining this observation with (2.6), we see that we do not have a con-
tinuous embedding of Bα

τ in Aγ
∞(Lp) for any values of α, γ > 0.

Yet, with the realization of f0 := ∆j as a neural network, we have that
|f0|Bα

τ
∼ 2jα and then, as we proceed trough the layers, the Besov semi-norm

of the inner layer representations decreases exponentially, since f2 = ∆j−1,

f4 = ∆j−2, etc. That is, |f2|Bα
τ
∼ 2(j−1)α, |f4|Bα

τ
∼ 2(j−2)α, etc.

Observe that one can easily construct more examples of such composi-
tional ‘sawtooth-type’ functions. For example, let 1 < A < B < ∞ and
for each 1 ≤ i ≤ j, pick a random parameter ai ∈ [A,B]. Next define the
piecewise linear ‘tooth’ with support in [0, 1] realized by

∆ai
(x) := ai(x)+ − ai

ai − 1
(aix− 1)+ +

ai

ai − 1
(x− 1)+, 1 ≤ i ≤ j.

One has ∆ai
(a−1

i) = 1. Then, the ‘sawtooth-type’ function

∆̃ := ∆a1
◦ · · · ◦ ∆aj

,

also has 2j−1 teeth and also satisfies |∆̃|Bα
τ

∼ 2jα. The sawtooth with
uniform knots ∆j corresponds to the choices ai = 2, 1 ≤ i ≤ j. Furthermore,

∆̃ can also be realized using a network of depth ∼ j, with the Besov semi-
norm of the inner layer representation spaces also decaying exponentially.
All this, with constants that further depend on A,B.

In the general case, it is known that every piecewise linear function on
[0, 1] over N (possibly non-uniform) knots can be realized by a network of
fixed width and ∼ N layers [12, 34]. Recall that in this work we are focused
on the analysis of the dynamics of the Besov smoothness across the inner

SPARSE BESOV SPACE ANALYSIS OF DEEP LEARNING 9

layer representations. To this end, we now show that one can provide a
relatively simple and stable NN realization of depth ∼ N of the linear spline
such that the Bα

τ smoothness of the inner layer representations is guaranteed

to decrease at rate ≤ c(N − k + 2)1/τ , k = 1, ..., N + 2.

Theorem 2.2. Let f : [0, 1] → R be a continuous piecewise linear function
with N knots and let α < 1/τ . Then, there exists a the neural network
realization of f of width 5 and depth N + 3, where the Besov semi-norms of
the inner layer representations fk : Ω → R, Ω := [0, 1]4 × [−‖f‖∞, ‖f‖∞],
2 ≤ k ≤ N + 2, are bounded by

(2.7) |fk|Bα
τ (Ω) ≤ c(α, τ, ‖f‖∞)(N − k + 2)1/τ .

Proof. Let f be a piecewise linear over [0, 1], with knots 0 < ξ1 < ξ2 < · · · <
ξN < 1. We augment the knots by −0.5 =: ξ−1 < 0 =: ξ0 < ξ1 < ξ2 <
· · · < ξN < ξN+1 := 1 < ξN+2 := 1.5. There are many ways to realize f
using a ReLU network [12, 34]. Here, we use a construction that provides
us with uniformly bounded inner layer representation domains. We use the
non-uniform linear B-spline representation

f(x) =

N+1
∑

k=0

cjHj(x), x ∈ [0, 1],

where for 0 ≤ k ≤ N + 1

Hk(x) :=
f(ξk)

ξk − ξk−1
(x−ξk−1)+−

f(ξk)(ξk+1 − ξk−1)

(ξk − ξk−1)(ξk+1 − ξk)
(x−ξk)++

f(ξk)

ξk+1 − ξk
(x−ξk+1)+.

Observe thatHk has support in [ξk−1, ξk+1], with two linear pieces in [ξk−1, ξk]
and [ξk, ξk+1], interpolating H(ξk) = f(ξk).

The first inner layer is produced by the transformation

M1 = [1, 1, 1, 1, 0]T , b1 = [0,−ξ−1,−ξ0, ξ1, 0]T ,

followed by ReLU activation. Thus, the feature space of the first inner layer
is

(x, (x− ξ−1)+, (x− ξ0)+, (x− ξ1)+, 0),

which provides a representation of f using this feature space by

f1(x, z1, z2, z3, 0) = f(x).

The second layer is given by the transformation

M2 =













1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

0 f(ξ0)
ξ0−ξ−1

− f(ξ0)(ξ1−ξ−1)
(ξ0−ξ−1)(ξ1−ξ0)

f(ξ0)
ξ1−ξ0

1













, b2 =













0
−ξ0
−ξ1
−ξ2
0













,

followed by ReLU activation. This gives a representation space

(x, (x− ξ0)+, (x− ξ1)+, (x− ξ2)+, H0(x)),

10 I. BEN-SHAUL, S. DEKEL, AND O. ELISHA

which we may parameterize as

(x, z1, z2, z3, y),

to obtain

f2(x, z1, z2, z3, y) = y +
N+1
∑

k=1

Hk(x) = f(x).

In general, the k − th inner layer, 2 ≤ k ≤ N + 3, is produced by

Mk =













1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

0
f(ξk−2)

ξk−2−ξk−3
− f(ξk−2)(ξk−1−ξk−3)

(ξk−2−ξk−3)(ξk−1−ξk−2)
f(ξk−2)

ξk−1−ξk−2
1













, bk =













0
−ξk−2

−ξk−1

−ξk
0













,

followed by ReLU activation. This gives a representation space

(x, (x− ξk−1)+, (x− ξk)+, (x− ξk+1)+,

k−2
∑

j=0

Hj(x)),

which we may use to reproduce f by

(2.8) fk(x, z1, z2, z3, y) = y +

N+1
∑

j=k−1

Hj(x) = f(x).

We see that the y component serves as a collocation channel through the
network. This means that as we proceed trough the layers, the number of
nonlinearities in the feature spaces of fk decreases linearly with k. We claim
this implies the decrease (2.7) on the bound of the |fk|Bα

τ (Ω) with k. Indeed,
for any α > 0, let us choose r ≥ max(bαc + 1, 2). It is well known that
choosing any r ≥ bαc + 1 gives an equivalent Besov norm.

We use the representation (2.8) to bound the semi-norms |fk|Bα
τ
. Denote

smin := minj=−1,...,N+1{ξj+1−ξj} > 0, fix 2 ≤ k ≤ N+1, let 0 < h1 < smin/r
and h := (h1, 0, 0, 0). The function fk has N − k + 2 knots in the first
coordinate. Denote

Sh := {x = (x1, ..., x5) ∈ Ω : [x1, x1 + rh1] does not intersect a knot}.
Then

|Sh| ≥ 1 − (N − k + 2)rh1.

Since ∆r
h(fk, x) = 0, for x ∈ Sh and r ≥ 2

∫

Ω
|∆r

h(fk, x)|τdx =

∫

Ω\Sh

|∆r
h(fk, x)|τdx

≤ c‖f‖1+τ
L∞[0,1](N − k + 2)h1.

SPARSE BESOV SPACE ANALYSIS OF DEEP LEARNING 11

This implies for t < smin/r

ωr(fk, t)
τ
Lτ (Ω) = sup

|h|≤t

‖∆r
h(fk, ·)‖τ

τ

= sup
h=(h1,0,0,0,0),|h1|≤t

‖∆r
h(fk, ·)‖τ

τ

≤ c‖f‖τ
L∞[0,1](N − k + 2)t.

Using the condition α < 1/τ
∫ smin/r

0

(

t−αωr(fk, t)Lτ (Ω)

)τ dt

t
≤ c‖f‖1+τ

L∞[0,1]
(N − k + 2)

∫ smin/r

0
t−ατdt

≤ c(α, τ, f)(N − k + 2).

For smin/r < t ≤ 1 and τ ≤ 1 we have

ωr(fk, t)
τ
τ ≤

(

r

smin
+ 1

)r

ωr(fk, smin/r)
τ
τ

≤ c(α, τ, f)(N − k + 2).

Using also the fact that Ω is bounded
∫ ∞

smin/r

(

t−αωr(fk, t)Lτ (Ω)

)τ dt

t
≤ c(α, τ, f)

∫ 1

smin/r

(

t−αωr(fk, t)Lτ(Ω)

)τ dt

t

≤ c(α, τ, f)(N − k + 2).

We may conclude that |fk|Bα
τ (Ω) ≤ c(α, τ, f)(N − k + 2)1/τ . �

In this work, we analyze the phenomena of improved smoothness in feed
forward neural networks’ representation layers using sparse Besov spaces
that are equivalent to classic Besov spaces in lower dimensions, yet are more
adequate in higher dimensions.

3. Wavelet decomposition of Random Forests

To overcome the challenge of analyzing the smoothness of high dimen-
sional representation spaces of datasets (e.g. inner layers in DL), we apply
the construction of wavelet decompositions of Random Forests [18]. The
Random Forest (RF) [5, 9, 21] introduced by Breiman [6, 7] as a machine
learning algorithm, is in fact a powerful adaptive sparse piecewise polyno-
mial approximation algorithm for high dimensional problems. The forest
overcomes the ‘greedy’ nature and high variance of a single decision tree.
The geometric wavelets [13, 18] used to decompose the forest allow sparse
representations and have many properties that are shared with the classical
wavelets [11, 26] that are not computationally feasible in high dimensions (in
dimension n = 100, 000, there are 2100,000−1 classic tensor wavelet ‘types’).
When combined, the wavelet decomposition of the RF unravels the sparsity
of the underlying function and establishes an order of the RF nodes from
‘important’ components to ‘negligible’ noise. Therefore, the method pro-
vides a better understanding of any constructed RF. As we shall see, our

12 I. BEN-SHAUL, S. DEKEL, AND O. ELISHA

motivation to use these wavelet decompositions is the equivalence between
sparse Besov smoothness over forests and the wavelet sparsity (see (4.5)).

We begin with an overview of single trees. In statistics and machine
learning the construction is called a Decision Tree or the Classification and
Regression Tree (CART) [8, 1, 5, 21]. Assume we are given a real-valued
function f ∈ Lp([0, 1]n) or a discrete dataset {xi ∈ [0, 1]n, f(xi)}i∈I (the
generalization to any convex bounded domain Ω0 ⊂ R

n is trivial). The goal
is to compute an adaptive piecewise polynomial approximation of f , even for
large dimensions n (potentially in the range of hundreds of thousands). To
this end, we subdivide the initial domain Ω0 := [0, 1]n into two subdomains,
e.g. by intersecting it with a hyper-plane. The goal is to find a subdivision
that approximately minimize a given cost function. This subdivision process
then continues recursively on the subdomains until some stopping criterion
is met, which in turn, determines the leaves of the tree. We now describe
one instance of the cost function which is related to minimizing variance.
At each stage of the subdivision process, at a certain node of the tree, the
algorithm finds, for the convex domain Ω ⊂ Rn associated with the node:

(i) A partition by an hyper-plane into two convex subdomains Ω′,Ω′′,
Ω′ ∪ Ω′′ = Ω.

(ii) Two multivariate polynomials QΩ′ , QΩ′′ ∈ Πr−1 (Rn), of fixed (typi-
cally low) total degree r − 1.

The partition and the polynomials are chosen to minimize the following
quantity

(3.1) ‖f −QΩ′‖p
Lp(Ω′)

+ ‖f −QΩ′′‖p
Lp(Ω′′)

.

For the theory that follows, we require that the polynomials QΩ′ , QΩ′′ pro-
vide local near best approximation on their respective subdomains. In
applications, where the dataset is discrete, consisting of feature vectors
xi ∈ [0, 1]n, i ∈ I , with given values f (xi), a discrete functional is min-
imized over all partitions Ω′ ∪ Ω′′ = Ω

(3.2)
∑

xi∈Ω′

|f (xi) −QΩ′(xi)|p +
∑

xi∈Ω′′

|f (xi) −QΩ′′(xi)|p.

Observe that for any given subdividing hyperplane, the approximating
polynomials in (3.2) can be uniquely determined for p = 2, by least square
minimization. For the order r = 1, the approximating polynomials are
nothing but the mean of the function values over each of the subdomains

QΩ′ (x) = CΩ′ =
1

{xi ∈ Ω′}
∑

xi∈Ω′

f (xi),

QΩ′′ (x) = CΩ′′ =
1

{xi ∈ Ω′′}
∑

xi∈Ω′′

f (xi).

SPARSE BESOV SPACE ANALYSIS OF DEEP LEARNING 13

In many applications of decision trees, the high-dimensionality of the data
does not allow to search through all possible subdivisions. As in our experi-
mental results, one may restrict the subdivisions to the class of hyperplanes
aligned with the main axes. In contrast, there are cases where one would
like to consider more advanced form of subdivisions, where they take certain
hyper-surface form or even non-linear forms through kernel Support Vector
Machines. Our paradigm of wavelet decompositions can support in principle
all of these forms.

Random Forest (RF) is a popular machine learning tool that collects deci-
sion trees into an ensemble model. The trees are constructed independently
in a diverse fashion and prediction is done by a voting mechanism among all
trees. A key element [6], is that large diversity between the trees reduces the
ensemble’s variance. There are many RFs variations that differ in the way
randomness is injected into the model, e.g bagging, random feature subset
selection and the partition criterion. Bagging [7] is a method that produces
partial replicates of the training data for each tree. A typical approach is to
randomly select for each tree a certain percentage of the training set (e.g.
80%).

Additional methods to inject randomness can be achieved at the node
partitioning level. For each node, we may restrict the partition criteria to a
small random subset of the parameter values. A typical selection is to search
for a partition from a random subset of

√
n features [6]. This technique is

also useful for reducing the amount of computations when searching the
appropriate partition for each node. Bagging and random feature selections
are not mutually exclusive and can be used together.

For j = 1, ..., J, one creates a tree Tj, based on a subset of the data, X j.
One then provides a weight (score) wj to the tree Tj, based on the estimated

performance of the tree, where
∑J

j=1 wj = 1. In the supervised learning, one

typically uses the remaining data points xi /∈ X j to evaluate the performance
of Tj. For simplicity, we will mostly consider in this paper the choice of
uniform weights wj = 1/J. For any point x ∈ Ω0, the approximation

associated with the jth tree, denoted by f̃j (x), is computed by finding the

leaf Ω ∈ Tj in which x is contained and then evaluating f̃j (xi) := QΩ (x),
where QΩ is the corresponding polynomial associated with the decision node
Ω. One then assigns the RF approximate value to any point x ∈ Ω0 by

f̃ (x) =

J
∑

j=1

wjf̃j (x).

As already discussed, in classification problems, each input training point
xi ∈ Ω0 is assigned with a class Cl (xi). To convert the problem to the
‘functional’ setting described above, one assigns to the l-th class the standard
basis vector el ∈ R

L, 1 ≤ l ≤ L. Thus, we may assume that the input data
is in the form

{xi, Cl (xi)}i∈I ∈
(

R
n,RL

)

.

14 I. BEN-SHAUL, S. DEKEL, AND O. ELISHA

In this case, if we choose approximation using constants (r = 1), then the

calculated mean over any subdomain Ω is in fact a point ~EΩ ∈ R
L. Obvi-

ously, any vector value v = (v1, ..., vL) ∈ RL can be mapped back to a class,
along with an estimated confidence level, by calculating argmaxL

i=1 vi.
Next, we recall the construction of a wavelet decomposition of a forest

[18]. Let Ω′ be a child of Ω in a tree T , i.e. Ω′ ⊂ Ω and Ω′ was created
by a partition of Ω. Denote by 1Ω′ , the indicator function over the child
domain Ω′, i.e. 1Ω′ (x) = 1, if x ∈ Ω′ and 1Ω′ (x) = 0, if x /∈ Ω′. We use
the polynomial approximationsQΩ′ , QΩ ∈ Πr−1 (Rn), computed by the local
minimization (3.1) and define

(3.3) ψΩ′(x) := ψΩ′ (f) (x) := 1Ω′(x) (QΩ′(x)−QΩ(x)) ,

as the geometric wavelet associated with the subdomain Ω′ and the function
f , or the given discrete dataset {xi, f (xi)}i∈I . Each wavelet ψΩ′ , is a ‘local
difference’ component that belongs to the detail space between two levels in
the tree, a ‘low resolution’ level associated with Ω and a ‘high resolution’
level associated with Ω′. Also, the wavelets (3.3) have the ‘zero moments’
property, i.e., if the response variable is sampled from a polynomial of degree
r− 1 over Ω, then our local scheme will compute QΩ′ (x) = QΩ (x) = f (x),
∀x ∈ Ω, and therefore ψΩ′ = 0. We also define ψΩ0

:= QΩ0
.

Under certain mild conditions on the tree T and the function f , we have
by the nature of the wavelets, the ‘telescopic’ sum of differences

(3.4) f =
∑

Ω∈T

ψΩ, ψΩ0
:= QΩ0

.

For example, (3.4) holds in Lp-sense, 1 ≤ p <∞, if f ∈ Lp (Ω0) and for any
x ∈ Ω0 and series of domains Ωl ∈ T , each on a level l, with x ∈ Ωl , we
have that lim

l→∞
diam (Ωl) = 0.

The norm of a wavelet supported on a child Ω′ of Ω is computed by

‖ψΩ′‖p
p =

∫

Ω′

(QΩ′ (x) −QΩ (x))p dx.

For the case r = 1, where QΩ (x) = CΩ and QΩ′ (x) = CΩ′ this simplifies to

(3.5) ‖ψΩ′‖p
p = |CΩ′ −CΩ|p

∣

∣Ω′
∣

∣ ,

where |Ω′| denotes the volume of Ω′. Observe that for r = 1, the subdivision
process for partitioning a node by minimizing (3.1) is equivalent to maxi-
mizing the sum of squared norms of the wavelets that are formed in that
partition (see [18]).

Recall that our approach is to convert classification problems into a ‘func-
tional’ setting by assigning the class labels to vector values in R

L. In such
cases of vector-valued functions, choosing r = 1, the wavelet ψΩ′ : R

n → R
L

is

ψΩ′(x) = 1Ω′(x)
(

~EΩ′ − ~EΩ

)

,

SPARSE BESOV SPACE ANALYSIS OF DEEP LEARNING 15

Figure 4. Selection of an M-term approximation from the
entire forest.

and its norm is given by

(3.6) ‖ψΩ′‖p
p =

∥

∥

∥

~EΩ′ − ~EΩ

∥

∥

∥

p

l2(RL)

∣

∣Ω′
∣

∣ ,

where for ~v ∈ RL,‖~v‖l2
:=
√

∑L
i=1 v

2
i .

Using any given weights assigned to the trees, we obtain a wavelet repre-
sentation of the entire RF

(3.7) f̃ (x) =

J
∑

j=1

∑

Ω∈Tj

wjψΩ (x).

The theory tells us that, just as in the classical case [14], sparse approxima-
tion is achieved by reordering the wavelet components based on their norm
[18]

(3.8) wj(Ωk1)

∥

∥

∥
ψΩk1

∥

∥

∥

p
≥ wj(Ωk2)

∥

∥

∥
ψΩk3

∥

∥

∥

p
≥ · · · ,

with the notation Ω ∈ Tj ⇒ j (Ω) = j. Thus, the adaptive M-term approxi-
mation of a RF is

(3.9) fM (x) :=
M
∑

m=1

wj(Ωkm)ψΩkm
(x).

Observe that, contrary to most existing tree pruning techniques [23], where
each tree is pruned separately, the above approximation process applies a
‘global’ pruning strategy where the significant components can come from
any node of any of the trees at any level. For simplicity, one could choose
wj = 1/J, and obtain

(3.10) fM (x) =
1

J

M
∑

m=1

ψΩkm
(x).

Figure 4 depicts an M-term (3.10) selected from an RF ensemble. The red
colored nodes illustrate the selection of the M wavelets with the highest
norm values from the entire forest. Observe that they can be selected from
any tree at any level, with no connectivity restrictions.

16 I. BEN-SHAUL, S. DEKEL, AND O. ELISHA

4. Geometric multivariate function space theory

An important research area of approximation theory, pioneered by Pen-
cho Petrushev, is the characterization of adaptive geometric approxima-
tion algorithms by generalizations of the classic isotropic Besov spaces to
sparse Besov-type spaces [10, 13, 22] that are more adequate for unstruc-
tured data in high-dimensions. We begin by defining the ‘weak-type’ sparse
Besov smoothness of a function, subject to the geometry of a single (possibly
adaptive) tree

Definition 4.1. For α < 1/τ , r ≥ 1, f ∈ Lτ (Ω0), Ω0 ⊂ R
n, and tree T

over Ω0, we define the associated sparse tree Besov smoothness in Bα,r
τ (T),

r ∈ N, by

(4.1) |f |Bα,r
τ (T) :=

(

∑

Ω∈T

(

|Ω|−α ωr (f,Ω)τ

)τ

)1/τ

,

where |Ω| denotes the volume of Ω.

In cases where we wish to approximate in the p-norm, 0 < p < ∞ we
shall typically set 1/τ := α + 1/p. The higher the index α for which (4.1)
is finite, the smoother the function is. Also, the above definition generalizes
the classical function space theory of Besov spaces, where the tree partitions
are non-adaptive. In fact, classical Besov spaces are a special case, where
the tree is constructed (non-adaptively) by partitioning over dyadic knots
such that at levels which are multiples of n one obtains dyadic cubes. For
these special dyadic trees TD, one has Bα

τ (TD) ∼ Bαn
τ , where the latter space

is the classic Besov semi-norm defined by (2.5).
We note that we do not impose the condition r > α for (4.1) as we have

done for (2.5). In fact, as we shall see below, for most part we will use
r = 1. We remind the reader that in certain configurations of classical
Besov spaces Bα,r

τ , where r < α and 1 ≤ τ ≤ ∞, we get a trivial space [15]
(e.g. polynomials of degree r − 1 when Ω is a segment and {0} for Ω = R).
However, this is not the case here, since whenever α ≥ 1, we immediately
have τ < 1. For example, any f(x) := 1Ω̃(x), where Ω̃ ⊂ R

n is a compact
domain with a smooth boundary, satisfies f ∈ Bα,r

τ (TD), for any r ≥ 1 and
α < 1/τ .

For a given forest F = {Tj}J
j=1 and weights wj = 1/J, the α sparse Besov

semi-norm associated with the forest is

(4.2) |f |Bα,r
τ (F) :=

1

J





J
∑

j=1

|f |τBα,r
τ (Tj)





1/τ

.

Definition 4.2. Given a (possibly adaptive) forest representation, we define
the sparse Besov smoothness index of f by the maximal index α for which
(4.2) is finite.

SPARSE BESOV SPACE ANALYSIS OF DEEP LEARNING 17

Remark It is known that different geometric approximation schemes are
characterized by different flavors of Besov-type smoothness. In this work,
for example, all of our experimental results compute smoothness of repre-
sentations using partitions along the main n axes. This restriction may
lead, in general, to potentially lower Besov smoothness of the underlying
function and lower sparsity of the wavelet representation. Yet, the theoret-
ical definitions and results of this paper can also apply to more generalized
schemes where, for example, tree partitions are performed using arbitrary
hyper-planes. In such a case, the smoothness index of a given function may
increase.

Next, for a given tree T and parameter 0 < τ < p, we denote the τ -
sparsity of the tree by

(4.3) Nτ (f, T) =





∑

Ω6=Ω0,Ω∈T

‖ψΩ‖τ
p





1/τ

.

Let us further denote the τ -sparsity of a forest F , by

Nτ (f,F) :=
1

J





J
∑

j=1

∑

Ω6=Ω0 ,Ω∈Tj

‖ψΩ‖τ
p





1/τ

=
1

J





J
∑

j=1

Nτ (f, Tj)
τ





1/τ

.

In the setting of a single tree constructed to represent a real-valued function
and under mild conditions on the partitions (see remark after (3.4) and
condition (4.7)), the theory of [13] proves the equivalence

(4.4) |f |Bα,r
τ (T) ∼ Nτ (f, T) .

Here, we assume 1/τ := α + 1/p and that the wavelets are local differences
of near-best local polynomial approximations from the space of polynomials
of degree r − 1 (see (3.1)). This implies that there are constants 0 < C1 <
C2 < ∞, that depend on parameters such as α, p, n, r and ρ in condition
(4.7) below, such that

C1 |f |Bα,r
τ (T) ≤ Nτ (f, T) ≤ C2 |f |Bα,r

τ (T) .

Therefore, we also have for the forest model

(4.5) |f |Bα,r
τ (F) ∼ Nτ (f,F) .

Next, we present a simple invariance property of the smoothness analysis
under higher dimension embedding.

Lemma 4.3. Let f : [0, 1]n → R
L, f ∈ Lp([0, 1]n) and let F be a forest

approximation of f . For any m ≥ 0, let x̃ = (x, 0, ..., 0) ∈ [0, 1]n+m, x ∈
[0, 1]n. Let us further define f̃ (x̃) := f(x). Next, denote by F̃ a forest
defined over [0, 1]n+m which is the natural extension of F , using the same

18 I. BEN-SHAUL, S. DEKEL, AND O. ELISHA

trees with same partitions over the first n coordinates. Then, for r = 1 and
any τ > 0,

Nτ

(

f̃ , F̃
)

= Nτ (f,F) .

Proof. Let Ω′ ∈ F be one the domains of the trees of F , with wavelet of the
type

ψΩ′(x) = 1Ω′(x)
(

~EΩ′ − ~EΩ

)

.

Recall that Nτ (f,F) is the lτ norm of the sequence of the wavelet norms
given by (3.6).

Now, for each domain Ω′ ∈ F and the corresponding domain Ω̃′ ∈ F̃ ,
using the normalization of the feature spaces ensures that

(4.6)
∣

∣Ω′
∣

∣ =
∣

∣Ω′
∣

∣× |[0, 1]m| =
∣

∣

∣Ω̃′
∣

∣

∣ .

Since the vector means remain unchanged under the higher dimensional

embedding ~EΩ′ = ~EΩ̃′ , we have using (4.6) and (3.6)

‖ψΩ′‖Lp([0,1]n) =
∥

∥ψΩ̃′

∥

∥

Lp([0,1]n+m)
.

This gives Nτ

(

f̃ , F̃
)

= Nτ (f,F). �

Remark Note that the above invariance property also holds if the additional
m redundant features are intertwined with the n significant features that
are ‘detected’ and used for tree subdivisions during the construction of the
random forest.

In the setting in which we wish to apply our function theoretical approach,
we are comparing smoothness of representations over different layers of DL
networks. This implies that we are analyzing and comparing the smooth-
ness of a set of functions fk, each over a different representation space of
a different dimension nk. This is, in some sense, non-standard in function
space theory, where the space, or at least the dimension, over which the
functions have their domain is typically fixed. Specifically, observe that the
equivalence (4.5) depends on the dimension n of the feature space. To this
end, we add to the theory ‘dimension-free’ analysis for the case r = 1.

We begin with a Jackson-type estimate for the degree of the adaptive
wavelet forest approximation, which we keep ‘dimension free’ for the case

r = 1. To this end, let F = {Tj}J
j=1 be a forest. Assume there exists a

constant 0 < ρ < 1, such that for any domain Ω ∈ F on a level l and any
domain Ω′ ∈ F , on the level l + 1, with Ω ∩ Ω′ 6= ∅, we have

(4.7)
∣

∣Ω′
∣

∣ ≤ ρ |Ω| .
For any r ≥ 1, denote formally f =

∑

Ω∈F

wj(Ω)ψΩ, and assume thatNτ (f,F) <

∞, where
1

τ
= α+

1

p
.

SPARSE BESOV SPACE ANALYSIS OF DEEP LEARNING 19

Under these conditions, it is proved in [18] that f ∈ Lp, and that the fol-
lowing Jackson estimate holds for the wavelet forest M -term approximation
(3.9)

(4.8) σM (f) := ‖f − fM‖p ≤ C (p, α, ρ, r, n)JM−αNτ (f,F).

Here, we observe that for the case r = 1, one can remove the dependence of
the constant on the dimension

Theorem 4.4. Under the above conditions on F , for r = 1 and the M -term
approximation (3.9) we have

(4.9) σM(f) := ‖f − fM‖p ≤ C (p, α, ρ)JM−αNτ (f,F).

Proof. We essentially follow the proof in [18]. To see (4.9) we observe that
the dimension n comes into play in the Nikolskii-type estimate for bounded
convex domains Ω ⊂ R

n, and r ≥ 1

‖ψΩ‖∞ ≤ c(p, n, r)|Ω|−1/p ‖ψΩ‖p .

However, for the special case of r = 1 this actually simplifies to

‖ψΩ‖∞ = |Ω|−1/p ‖ψΩ‖p .

�

Using the Jackson estimate (4.8) and the equivalence (4.5), we get for any
r ≥ 1

σM(f) ≤ C (p, α, ρ, n)JM−α |f |Bα,r
τ (F) ,

which is not a ‘dimension-free’ Jackson estimate, as the one will show below
for r = 1 (see (4.14)).

Next, to allow our smoothness analysis to be ‘dimension free’ we modify
the modulus of smoothness (2.4) for r = 1 and use the following form of
‘averaged modulus’

Definition 4.5. For a function f : Ω → RL we define

(4.10) w1(f,Ω)τ :=

(∫

Ω

∥

∥

∥f (x)− ~EΩ

∥

∥

∥

τ

l2(RL)
dx

)1/τ

,

where ~EΩ is the average of f over Ω.

It is well known that averaged forms of the modulus are equivalent to
the form (2.4), but with constants that depend on the dimension. However,
replacing (2.4) with (4.10) allows us to produce ‘dimension-free’ analysis.
We use (4.10) to define

|f |B̃α
τ (T) :=

(

∑

Ω∈T

(

|Ω|−αw1(f,Ω)τ
)τ

)1/τ

,

|f |B̃α
τ (F) :=

1

J





J
∑

j=1

|f |τ
B̃α

τ (Tj)





1/τ

.

20 I. BEN-SHAUL, S. DEKEL, AND O. ELISHA

We can now show

Theorem 4.6. Let f : Ω0 → R
L. Then the following equivalence holds for

the case r = 1,

(4.11) |f |B̃α
τ (F) ∼ Nτ (f,F) ,

where 1/τ = α + 1/p, and the constants of equivalence depend on α, τ, ρ,
but not n.

Proof. Obviously, it is sufficient to prove the equivalence for a single tree T .
Observe that condition (4.7) also implies that for any Ω′ ∈ T , with parent
Ω, we also have

|Ω| ≤ (1− ρ)−1
∣

∣Ω′
∣

∣ .

We use this as well as (3.6) to prove the first direction of the equivalence as
follows

Nτ (f, T)τ =
∑

Ω′ 6=Ω0,Ω′∈T

‖ψΩ′‖τ
p

=
∑

Ω′ 6=Ω0 ,Ω′∈T ,
Ω parent of Ω′

(

∣

∣Ω′
∣

∣

1/p
∥

∥

∥

~EΩ′ − ~EΩ

∥

∥

∥

l2(RL)

)τ

=
∑

Ω′ 6=Ω0,Ω′∈T

(

∣

∣Ω′
∣

∣

1/p−1/τ‖ψΩ′‖τ

)τ

≤ c (τ)
∑

Ω′ 6=Ω0 ,Ω′∈T
,Ω parent of Ω′

{(

∣

∣Ω′
∣

∣

−α
∥

∥

∥

∥

∥

∥

∥f (·)− ~EΩ′

∥

∥

∥

l2(RL)

∥

∥

∥

∥

Lτ (Ω′)

)τ

+

(

∣

∣Ω′
∣

∣

−α
∥

∥

∥

∥

∥

∥

∥f (·)− ~EΩ

∥

∥

∥

l2(RL)

∥

∥

∥

∥

Lτ (Ω′)

)τ}

≤ c (τ, ρ, α)
∑

Ω∈T

(

|Ω|−α

∥

∥

∥

∥

∥

∥

∥
f (·)− ~EΩ

∥

∥

∥

l2(RL)

∥

∥

∥

∥

Lτ (Ω)

)τ

= c (τ, ρ, α)
∑

Ω∈T

(

|Ω|−αw1(f,Ω)τ

)τ

= c |f |τ
B̃α

τ
.

We now prove the other direction. We assume 0 < τ ≤ 1 (the case 1 < τ <
∞ is similar). For any Ω ∈ T we have

(4.12) w1 (f,Ω)τ
τ ≤

∑

Ω′∈T ,Ω′⊂Ω

‖ψΩ′‖τ
τ ,

SPARSE BESOV SPACE ANALYSIS OF DEEP LEARNING 21

by the following estimates

w1 (f,Ω)ττ =

∫

Ω

∥

∥

∥

∥

∥

∑

Ω′∈T

ψΩ′ (x) − ~EΩ

∥

∥

∥

∥

∥

τ

l2(RL)

dx

=

∫

Ω

∥

∥

∥

∥

∥

∥

∑

Ω′∈T

ψΩ′ (x) −
∑

Ω′∈T ,Ω⊆Ω′

ψΩ′ (x)

∥

∥

∥

∥

∥

∥

τ

l2(RL)

dx

=

∫

Ω

∥

∥

∥

∥

∥

∥

∑

Ω′∈T ,Ω′⊂Ω

ψΩ′ (x)

∥

∥

∥

∥

∥

∥

τ

l2(RL)

dx

≤
∑

Ω′∈T ,Ω′⊂Ω

‖ψΩ′‖τ
τ .

Also, observe that by condition (4.7), for any Ω′ ∈ T

(4.13)
∑

Ω∈T ,Ω′⊂Ω

(|Ω′|
|Ω|

)ατ

≤
∞
∑

k=1

ρkατ ≤ c (ρ, α, τ) .

We apply (4.12) and (4.13) to conclude

|f |τ
B̃α

τ (T)
≤
∑

Ω∈T

|Ω|−ατ
∑

Ω′∈T ,Ω′⊂Ω

‖ψΩ′‖τ
τ

=
∑

Ω∈T

∑

Ω′∈T ,Ω′⊂Ω

(|Ω′|
|Ω|

)ατ(
∣

∣Ω′
∣

∣

−α‖ψΩ′‖τ

)τ

=
∑

Ω′ 6=Ω0 ,Ω′∈T

(

∣

∣Ω′
∣

∣

−α‖ψΩ′‖τ

)τ ∑

Ω∈T ,Ω′⊂Ω

(|Ω′|
|Ω|

)ατ

≤ c (α, τ, ρ)
∑

Ω′ 6=Ω0 ,Ω′∈T

(

∣

∣Ω′
∣

∣

−α∣
∣Ω′
∣

∣

1/τ−1/p‖ψΩ′‖p

)τ

= c (α, τ, ρ)
∑

Ω′ 6=Ω0 ,Ω′∈T

‖ψΩ′‖τ
p

= cNτ (f, T)τ .

�

The equivalence (4.11) together with (4.9) imply that for r = 1 we do
have a ‘dimension-free’ Jackson estimate

(4.14) σM (f) ≤ C (p, α, ρ)JM−α |f |B̃α
τ (F) .

5. Smoothness analysis of the representation layers in deep

learning networks

We now explain how the theory presented in Section 4 is used to estimate
the ‘weak-type’ smoothness of a given function in a given representation

22 I. BEN-SHAUL, S. DEKEL, AND O. ELISHA

layer. Recall from the introduction that we create a representation of images
at layer 0 by concatenating the

√
n0 rows of pixel values of each grayscale

image, to create a vector of dimension n0 (or 3 × n0 for a color image).
We also normalize the pixel values to the range [0, 1]. We then transform
the class labels into vector-values in the space R

L by assigning each label
l, the standard basis vector el ∈ R

L (see Section 3). Thus, the images
are considered as samples of a function f0 : [0, 1]n0 → R

L. In the same
manner, we associate with each k-th layer of a DL network, a function
fk : [0, 1]nk → R

L, where nk is the number of features/neurons at the
k-th layer. The samples of fk are obtained by applying the network on
the original images up the given k-th layer. For example, in a convolution
layer, we capture the representations after the cycle of convolution, non-
linearity and pooling. We then extract vectors created by normalizing and
concatenating the feature map values corresponding to the images. Recall
that although the functions {fk} are embedded in different dimensions {nk},
through the simple normalizing of the features, our method is able to assign
smoothness indices to each layer that are comparable.

Next we describe how we estimate the smoothness of each function fk

using the method of [3]. We compute a random forest Fk over the samples
of fk with the choice r = 1 and then apply the wavelet decomposition of the
RF (see Section 3). We work under the assumption that at each layer, we
have a sufficient number of samples relative to k-th feature space dimension
nk and that we construct a forest Fk which is diverse enough to capture the
‘geometry’ of fk.

With p = 2, for each k, the goal is to numerically estimate

τ∗k := inf
0<τ<2

{τ | Nτ (fk,Fk) <∞}.

Based on the either the equivalence (4.5) or the dimension free equivalence
(4.11) for r = 1, this gives an estimate for critical (optimal) smoothness of
each fk

(5.1) α∗
k =

1

τ∗k
− 1

2
.

It is obvious that for any f ∈ L2([0, 1]n) and random forest F built adap-
tively to fit it, the univariate function Nτ (f,F), as function of τ is monoton-
ically non-increasing. Yet, in discrete setting, there is no value 0 < τ < 2,
however small, for which Nτ (f,F) = ∞. So the estimate of a ‘critical’ τ∗ is
a numeric estimate for where the derivative (as a function of τ)

d

dτ
Nτ (f,F) =

1

J

d

dτ





J
∑

j=1

∑

Ω6=Ω0 ,Ω∈Tj

‖ψΩ‖τ
2





1/τ

,

crosses some lower threshold.

SPARSE BESOV SPACE ANALYSIS OF DEEP LEARNING 23

Figure 5. Example of plots of N ′
τ and θ(N ′

τ)

First, we compute a series of samples Nτi
(f,F), for a set of discrete

evenly spaced samples {τi}M
i=1, 0 < τi < 2. We then approximate, using the

samples, the numerical derivatives

N ′
i ≈

d

dτ
Nτi

(f,F), 1 ≤ i ≤M.

We use the angles of the numerical derivatives

θi := arctan(N ′
i),

to estimate the transition index τ∗ which is associated with an infinite de-
rivative, or equivalently, an angle of −π/2. To this end, we use two meta
parameters: εlow, εhigh, and define

S := {τi : −π
2

+ εlow ≤ θi ≤ −π
2

+ εhigh}.
We then approximate the transition index by

τ∗ ≈ −εlow +
1

|S|
∑

τi∈S

τi.

A demonstration is shown in Figure 5.

6. Experimental Results: Smoothness analysis across DL

representation layers

Our goal is to show how the theory laid out in this paper enables to
look into the ‘black box’ of a neural network and analyze its performance.
For all the experiments presented in this section 3 different neural networks
were trained using the same training set, each time with different initial-
ization seeds. Then, for each of the 3 networks, we applied the numerical
computation of the representation layers’ smoothness (5.1) using wavelet
decompositions of RFs of three trees each, with maximal depth of 15 layers.
The hyper parameters of Section 5 were selected as εlow = 0.1, εhigh = 0.4.
The smoothness estimates for each layer were averaged over the 3 trained

24 I. BEN-SHAUL, S. DEKEL, AND O. ELISHA

Figure 6. Smoothness improvement through intermediate
layers and the training phase

models. It is important to note that in the results below the function space
smoothness estimates are performed using only the training dataset. Then,
testing of the accuracy of the models is performed using out of bag testing
dataset. Nevertheless, as we shall see below, there is a strong correlation
between the rate of improvement of smoothness across the model’s interme-
diate layers and its performance in the testing phase.

6.1. Analysis of a classic well-performing convolutional neural net-

work. We start off with a simple example of a relatively simple dataset and
an appropriate and well functioning neural network architecture. In this
example we use MNIST-1D [27], a well known univariate equivalent of the
classic MNIST image dataset. In MNIST-1D, as opposed to MNIST, the
signals are intertwined in the input space, and are then much less separable.
We apply to it a classic convolutional network with 7 layers (see Subsec-
tion 2.1). The question is, how does the representation smoothness improve
across layers and throughout the training phase? To this end we monitor for
each k-th layer, the smoothness α∗

k (see (5.1)) and record it every 10 epochs
of the training phase. The results are shown in figure 6. While obviously
the smoothness of the input dataset at layer 0 is constant throughout the
training, it is clear that the smoothness improves as we progress forward
through the intermediate layers and through the training. Also notice the
correlation with the testing result depicted on the right hand side, although
the smoothness of the intermediate layers is numerically estimated using
only the training data.

SPARSE BESOV SPACE ANALYSIS OF DEEP LEARNING 25

Figure 7. Analysis of Fashion-MNIST classification models:
a ‘good’ ResNet architecture and a ‘bad’ alternating archi-
tecture.

6.2. Analysis of a ‘problematic’ neural network architecture. In
most cases, where there is a problem with the chosen network architec-
ture, we can only hopelessly observe the bad testing result. This is espe-
cially frustrating in cases where the problematic architecture is still able to
overfit the training data and produce a low training loss. To demonstrate
this, we use the well known Fashion-MNIST image dataset and create two
types of classification models. The first model is based on a ‘sensible’ ar-
chitecture of convolutional residual networks [24]. For the second model,
we deliberately construct an architecture that does not make sense from a
computer-theoretical perspective. Specifically, we construct a network where
the types of layers alternate between convolutional and MLP. Thus, every
convolutional layer is followed by reshaping of the 3D feature space (se-
quence of 2D feature maps) into a vector and then an MLP layer. In Figure
7 we see the analysis of the two models. We see that the ‘bad’ architecture
does not support improvement of the intermediate layers which leads to low
testing performance.

6.3. Analysis of performance of activation functions. In Subsection
2.1 we reviewed the role of the nonlinear activation functions and provided
some examples. Here we use again the MNIST-1D dataset and fix a convo-
lutional neural network as the classification model, where the only hyper-
parameter we change for each run is the activation function. Suppose we are

26 I. BEN-SHAUL, S. DEKEL, AND O. ELISHA

Figure 8. Analysis of MNIST-1D classification models: Dif-
ferent nonlinear activation functions.

trying to create a new activation function, by using a simple step function:

σH(x) =

{

1, if x > 0.

0, otherwise.

At face value, this seems a potentially problematic activation function since
it does not output any magnitude values, only simple activation of ‘0’ or ‘1’.
Other nonlinearities we analyze here are the ReLU (2.2) its variants Leaky
ReLU and GELU and the Sigmoid. Figure 8 shows the dominance of the
ReLU activation over other activations. The ReLU variants - Leaky ReLU
and GELU are relatively close in performance. The Sigmoid is indeed far
lower in terms of α∗, and we see a dip during train. Again, we see a clear
correlation of the architectural smoothness space analysis using the training
data and the testing performance of the different activations.
Acknowledgment We deeply thank the referee for comments that resulted
in a significantly improved paper.

References

[1] E. Alpaydin, Introduction to machine learning, MIT Press, 2004.
[2] Y. Bengio, A. Courville and P. Vincenty, Representation Learning: A Review and

New Perspectives, IEEE Transactions on Pattern Analysis and Machine Intelligence
8 (2013), 1798–1828.

[3] I. Ben-Shaul and S. Dekel, Sparsity-Probe: analysis tool for deep learning models,
https://arxiv.org/abs/2105.06849.

[4] I. Ben-Shaul, T. Galanti and S. Dekel, Exploring the approximation capabilities of
multiplicative neural networks for smooth functions, Transactions of Machine Learn-
ing 2023.

SPARSE BESOV SPACE ANALYSIS OF DEEP LEARNING 27

[5] G. Biau and E. Scornet, A random forest guided tour, TEST 25 (2016), 197–227.
[6] L Breiman, Random forests, Machine Learning 45 (2001), 5–32.
[7] L. Breiman, Bagging predictors, Machine Learning 24 (1996), 123–140.
[8] L. Breiman, J. Friedman, C. Stone and R. Olshen, Classification and Regression

Trees, Chapman and Hall/CRC, 1984.
[9] A. Criminisi, J. Shotton and E. Konukoglu, Forests for Classification, Regression,

Density Estimation, Manifold Learning and Semi-Supervised Learning, Microsoft Re-
search technical report, report TR-2011-114, 2011.

[10] W. Dahmen, S. Dekel and P. Petrushev, Two-level-split decomposition of anisotropic
Besov spaces, Constructive approximation 31 (2001), 149-194.

[11] I. Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series in
Applied Mathematics,1992.

[12] I. Dubechies, R. DeVore, S. Foucart, B. Hanin and G. Petrova, Nonlinear approxi-
mation and (deep) ReLU networks, Constructive approximation 55 (2022), 127-172.

[13] S. Dekel and D. Leviatan, Adaptive multivariate approximation using binary space
partitions and geometric wavelets, SIAM Journal on Numerical Analysis 43 (2005),
707–732.

[14] R. DeVore, Nonlinear approximation, Acta Numerica 7 (1998), 51–150.
[15] R. DeVore and G. Lorentz, Constructive approximation, Springer Science and Busi-

ness, 1993.
[16] R. DeVore, B. Jawerth and B. Lucier, Image compression through wavelet transform

coding, IEEE transactions on information theory 38 (1992), 719-746.
[17] D.Donoho, M. Vetterli, R DeVore and I. Daubechies Data compression and harmonic

analysis, IEEE Transactions on information theory 44 (1998), 2435-2476.
[18] O. Elisha and S. Dekel, Wavelet decompositions of Random Forests - smoothness

analysis,sparse approximation and applications, Journal of machine learning research
17 (2016), 1-38.

[19] R. Gribonval, G. Kutyniok, M. Nielsen and F. Voigtlaender, Approximation spaces
of deep neural networks, Constructive Approximation 55 (2022), 259-367.

[20] P. Grohs and G. Kutyniok (ed.), Mathematical aspects of deep learning, Cambridge
University press, 2022.

[21] T. Hastie, R. Tibshirani and J. Friedman, The elements of statistical learning,
Springer, 2009.

[22] B. Karaivanov and P. Petrushev, Nonlinear piecewise polynomial approximation be-
yond Besov spaces, Applied and computational harmonic analysis 15 (2003), 177-223.

[23] V. Kulkarni and P. Sinha, Pruning of Random Forest classifiers: A survey and future
directions, In International Conference on data science and engineering, 64-68, 2012.

[24] K. He, X. Zhang, S. Ren and Jian Sun, Deep Residual Learning for Image Recognition,
IEEE Conference on Computer Vision and Pattern Recognition 2016, 770-778.

[25] W. Loh, Classification and regression trees, Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery 1 (2011), 14-23.

[26] S. Mallat, A Wavelet tour of signal processing, 3rd edition (the sparse way), Acadmic
Press, 2009.

[27] Sam Greydanus, Scaling down Deep Learning, arXiv:2011.14439, 2020.
[28] M. Phuong and M. Hutter, Formal algorithms for transformers, DeepMind report,

arXiv:2207.09238 (2022).
[29] T. Poggio, H. Mhaskar, L. Rosasco, B. Miranda and Q. Liao, Why and when can deep-

but not shallow-networks avoid the curves of dimensionality: a review, International
Journal of Automation and computing 14 (2017), 503-519.

[30] P. Salembier and L. Garrido, Binary partition tree as an efficient representation for
image processing, segmentation, and information retrieval, IEEE transactions on im-
age processing9:561-576, 2000.

28 I. BEN-SHAUL, S. DEKEL, AND O. ELISHA

[31] R. Schwartz-Ziv and A. Armon, Tabular data:deep learning is not all you need, Infor-
mation Fusion 81 (2022), 84-90.

[32] R. Schwartz-Ziv and N. Tishbi, Opening the black box of Deep Neural Networks via
Information, http://arxiv.org/abs/1703.00810.

[33] J. Siegel, Optimal Approximation Rates for Deep ReLU Neural Networks on Sobolev
and Besov Spaces, JMLR 24 (2023), 152.

[34] D. Yarotsky, Error bounds for approximations with deep ReLU networks, Neural Net-
works 94 (2017), 103-114.

(I. Ben-Shaul) School of mathematical sciences, Tel-Aviv University

E-mail address : ido.benshaul@gmail.com

(S. Dekel) School of mathematical sciences, Tel-Aviv University

E-mail address : shaidekel6@gmail.com

(O. Elisha) Microsoft Research, Israel

E-mail address : Oren.Elisha@microsoft.com

