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Mathematical foundations of signal processing
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Mathematical foundations of signal processing

e Characterization of performance of
models/algorithms using function
space (weak-type) smoothness.

* Example: Performance of wavelet
image compression characterized
by Besov smoothness of image (as
a function).
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Mathematical foundations of signal processing

e Characterization of performance of
models/algorithms using function
space (weak-type) smoothness.

* Example: Performance of wavelet
image compression characterized
by Besov smoothness of image (as
a function).

* It all has to do with ‘geometry’ of
the data.

Bit plane 8

Sig. Prop. 2315
Refine = 932

Cleanup = 2570
Total Bytes 5817 % refined =291

Compression ratio =23 : 1
RMSE =4.18 PSNR =35.70 db
% 1nsig. = 93.99



Mathematical foundations of Al

* Is there ‘geometry’ of clusters in the feature space?
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Mathematical foundations of Al

* Is there ‘geometry’ of clusters in the feature space?

* All successful Machine Learning algorithms look for this geometry:
* Support Vector Machines, Random Forest, Gradient Boosting, etc.

* If not, can we transform to a better feature space through
feature engineering/deep learning (RNN, CNN, etc)?

Input Feature maps Feature maps Feature maps Feature maps utput
24x24 4@20x20 4@10x10 8@8x8 8@4x4 20@1x1
]
1
l
K E = Ll

Convolution Subsampling Convolution Subsampling Convglution

doe & o Moo M = O

e
L]
T




Mathematical foundations of Al

* Is there ‘geometry’ of clusters in the feature space?

* All successful Machine Learning algorithms look for this geometry:
* Support Vector Machines, Random Forest, Gradient Boosting, etc.

* If not, can we transform to a better feature space through
feature engineering/deep learning (RNN, CNN, etc)?

Our goal is to provide an holistic mathematical foundation for:
Signal processing, classical Ml and Al through:

function space theory, Approximation Theory, Geometric
Harmonic analysis



Crash course in Deep Learning
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ImageNet is an image database organized according to the WordNet hierarchy (currently only the nouns),
in which each node of the hierarchy is depicted by hundreds and thousands of images. Currently we have

an average of guer fivie buing TaaP=Tal=X pode e hapo lmagaohlot will bocamo o usofill rasalicco
) . i - : i l‘“‘=r - -—-—-, CeENT
researcners, €Sl =< TR ,\g:‘" ""‘m-vv t";"""'h TR e
=y grp— ,'.. =1 . e T = Ty ?"zw;ﬁ——-—ﬁl. . - w ’
Click here to | T den R e -

\""'

'person

NEMEL h_ T ..‘ . —%ﬂ-.-
motorcycle iR, iy _..__'jf‘ﬂ.k ﬂ?" «wﬂ*-n

e T o e 75
1‘?’?“'&1 ,' :r :;:.-- n‘x

!




IMJSAGENET Large Scale Visual Recognition Challenge 2017 (ILSVRC2017)

ImageNet Classification Error (Top 5)
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AlexNet (2012)
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f(x) = tanh(x)
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VGG Net (2015)
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Inception Blocks (2016)

Filter concat

Filter concat
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Figure 4. The schema for 35 x 35 grid modules of the pure Filter concat

Inception-v4 network. This is the Inception-A block of Figure 9]
Figure 5. The schema for 17 x 17 grid modules of the pure

Inception-v4 network. This is the Inception-B block of Figure|9)
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Softmax
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Chitsirt 1003
the Impact of Residual Connections on Learning
Cuitgiit 1538
Christian Szegedy Sergey loffe Vincent Vanhoucke
Google Inc. sioffellgoogle.com vanhouckellgoogle. com
Tt - 1600 Amphitheatre Pkwy, Mountain View, CA
szegedy@goocgle. com
Ot Enaci 58 Alex Alemi
alemi@goocgle.com
L T g L
Cupalr 1701710k
Caitgalr 1TwiTarbid

Crugat 5n35a 384

16



Challenges!!!

* Deep learning architectures:
* Initially created to mimic the human brain...
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* Deep learning architectures:
* Initially created to mimic the human brain...

* But now... complex configurations created through trial and
error, based on empiric results & intuition
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Challenges!!!

* Deep learning architectures:
* Initially created to mimic the human brain...

* But now... complex configurations created through trial and
error, based on empiric results & intuition

* ... making it all somewhat mystic ©
* Now... many new papers trying to demystify
 Why is it difficult?
* Each hidden layer of a different structure, different dimension
e Statistical methods have difficulty to capture the complexity
* The representations are non continuous.
* Difficult to obtain a unifying approach!!!



Function space representation: layer O

* Assume we have a dataset of grayscale images of dimension \/ax \/E
* We concatenate the pixel values to vectors of size n, .

» We normalize the pixels values to [0,1].

* Each image is associated with one of L class labels.

 We map each label to a vertex of the standard simplex in R"™
* Thus, each image is now a sample of a function

f,:[0,1]° -» R**

In general this function will look like spaghetti...no clustering!
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Function space representation: inner layers

* For each k-th inner layer consisting of N, features/neurons we do
something similar (during or after the training).

* We ‘run’ each image through the network until the K-th layer.
* We concatenate the features of the image into a vector of size N, .
* The feature values are normalized to [0,1].

* This implies we now have samples of a function

f.:[0,1]" - R"™
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Unfolding of the clusters

Conjecture #1 For a trained well-performing DL network, the

functions , L1
f.:[01]" >R, k=0,...,K=#Layers

are “better” behaved as we go deeper through the layers.

Conjecture #2 The functions get “better” through the training
iterations.

* But how do we quantify? The series of functions { fk} :
* Have their domains in very high and different dimensional spaces
* Are discontinuous
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CIFAR10: Unfolding of the clusters
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Fig. 4. Smoothness analysis of DL layers representations of CIFAR10
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Generalization (understanding mis-labeled datasets)
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Figure 1: Fitting random labels and random pixels on CIFARI0. (a) shows the training loss of
various experiment settings decaying with the training steps. (b) shows the relative convergence
time with different label corruption ratio. (c¢) shows the test error (also the generalization error since
training error 18 0) under different label corruptions.

TC. Zhang, S. Bengio, M. Hardt, B. Recht and
O. Vinyals, Understanding deep learning

requires rethinking generalization, ICLR 2017.
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Generalization (understanding mis-labeled datasets)
We measure the smoothness at the last inner layer f, .

Input Feature maps

Feature maps Feature maps Feature maps

Output

24x24 4@20x20 4@10x10 8@8x8 20@1x1
'\FE
L ij
Mis-labeling 0% 10% 20% 30% 40%
MNIST smoothness 0.28 0.106 | 0.084 | 0.052 0.03
CIFAR10 smoothness | 0.204 | 0.072 | 0.053 | 0.051 | 0.003
TABLE 1

Smoothness analysis of mis-labeled image images
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