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• Characterization of performance of 
models/algorithms using function 
space (weak-type) smoothness. 
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• Characterization of performance of 
models/algorithms using function 
space (weak-type) smoothness. 

• Example: Performance of wavelet 
image compression characterized 
by Besov smoothness of image (as 
a function). 

• It all has to do with ‘geometry’ of 
the data. 
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• Is there ‘geometry’ of clusters in the feature space?

• All successful Machine Learning algorithms look for this geometry:
• Support Vector Machines, Random Forest, Gradient Boosting, etc.

• If not, can we transform to a better feature space through 
feature engineering/deep learning (RNN, CNN, etc)? 

Our goal is to provide an holistic mathematical foundation for:

Signal processing, classical Ml and  AI through:

function space theory, Approximation Theory, Geometric 
Harmonic analysis

8

Mathematical foundations of AI



Crash course in Deep Learning







Convolutions = weight sharing → tractaible computation

AlexNet (2012)
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Non-linearity



VGG Net (2015) 
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Inception Blocks (2016)
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• Deep learning architectures: 

• Initially created to mimic the human brain…
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• Deep learning architectures: 

• Initially created to mimic the human brain…

• But now… complex configurations created through trial and 
error, based on empiric results & intuition

• … making it all somewhat mystic ☺

• Now… many new papers trying to demystify

• Why is it difficult?

• Each hidden layer of a different structure, different dimension

• Statistical methods have difficulty to capture the complexity

• The representations are non continuous. 

• Difficult to obtain a unifying approach!!!
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• Assume we have a dataset of grayscale images of dimension 

• We concatenate the pixel values to vectors of size      .

• We normalize the pixels values to          .

• Each image is associated with one of     class labels.

• We map each label to a vertex of the standard simplex in 

• Thus, each image is now a sample of a function

In general this function will look like spaghetti…no clustering! 
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Function space representation: layer 0
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• For each    -th inner layer consisting of       features/neurons we do 
something similar (during or after the training). 

• We ‘run’ each image through the network until the   -th layer.

• We concatenate the features of the image into a vector of size     .

• The feature values are normalized to          .

• This implies we now have samples of a function
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Function space representation: inner layers
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Conjecture #1 For a trained well-performing DL network, the 
functions 

are “better” behaved as we go deeper through the layers.

Conjecture #2 The functions get “better” through the training 
iterations.

• But how do we quantify? The series of functions          :
• Have their domains in very high and different dimensional spaces

• Are discontinuous   
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Unfolding of the clusters
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CIFAR10: Unfolding of the clusters 

Layer Type # Features

0 Input 576

1 Conv 9216

2 Conv 2304

3 Fully 384

4 Fully 192

5 Logits 10



24

*C. Zhang, S. Bengio, M. Hardt, B. Recht and 
O. Vinyals,  Understanding deep learning 
requires rethinking generalization, ICLR 2017.

Generalization (understanding mis-labeled datasets)
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We measure the smoothness at the last inner layer          . 

Generalization (understanding mis-labeled datasets)
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