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Figure 1. Visualization of input feature spaces: MNIST dataset
(left) and Titanic dataset (right)

Figure 2. Improved clustering across layer representation spaces.

that in cases where the input function has low ‘weak-type’ smoothness, the role of
a feed-forward neural network is to perform automatic feature engineering which
improves the smoothness of the representations as we go deeper through the lay-
ers of the network. In Figure 1 we see a visualization of the feature space of two
famous datasets: Titanic and MNIST. The Titanic dataset is composed of tabular
data where the passenger features are: age, gender, class of ticket, port of boarding,
etc. and then the response variable is the binary survival outcome. The MNIST
dataset is composed of 28 × 28 grayscale images, each containing a hand-written
digit and each labeled: ‘0’ to ‘9’. Although the feature spaces of the samples of
the two datasets are high-dimensional, they are depicted colored with their label
using a nonlinear dimension reduction algorithm. Roughly speaking, the tabular
Titanic dataset has more cluster structures in the feature space, while the feature
space of MNIST seems very unstructured. We argue that while DL is not needed
for the Titanic dataset, the role of DL for the MNIST dataset is to unravel the
feature space and improve it layer by layer, where at each layer clustering improves
as shown in Figure 2. Consequently, the smoothness of the dataset improves across
layers in the corresponding representation spaces.

Let us provide more details for this process: Assume we are presented with a set of
gray-scale images of dimension

√
n0×

√
n0 with L class labels. Assume further that

a DL network has been successfully trained to classify these images with relatively
high accuracy. This allows us to extract the representation of each image in each
of the hidden layers. To create a representation at layer 0, we concatenate the
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√
n0 rows of pixel values of each image, to create a vector of dimension n0. We

also normalize the pixel values to the range [0, 1]. Since we advocate a function-
theoretical approach, we transform the class labels into vector-values in the space
RL by assigning the l-th label to the l-th standard basis vector, so the first class to
(1, 0, · · · ), the second class to (0, 1, 0, · · · ), etc. Thus, the images are considered as
samples of a function f0 : [0, 1]

n0 → RL. Typically, for non-tabular data, such as in
computer vision problems, there is no hope that there exists geometric clustering
of the classes in this initial feature space and that f0 has sufficient ‘weak-type’
smoothness. Thus, a transform into a different feature space is needed. We associate
with each k-th layer of a DL network, a function fk : [0, 1]nk → RL where the samples
are vectors created by normalizing and concatenating the feature maps computed
from each of the images. Interestingly enough, although the series of functions
fk are embedded in different dimensions nk, through the simple normalizing of
the features, our method is able to assign smoothness indices to each layer that
are comparable. We claim that for well performing networks, the representations in
general ‘improve’ from layer to layer and that our method mathematically quantifies
the phenomena that is rendered in Figure 2.

The paper is organized as follows: In Section 2 we present some basic DL ar-
chitectures and discuss the problem of the characterization of DL approximation
spaces. In Section 3 we review our sparse smoothness analysis machinery which is
the Wavelet Decomposition of Random Forest (RF) [18]. In Section 4 we present
the required sparse geometric function space theoretical background. Since we are
comparing different representations over different spaces of different dimensions, we
add to the theory presented in [18] relevant ‘dimension-free’ results. In Section 5 we
show how to apply the theory in practice. Specifically, we use a high dimensional
sparse generalization of the equivalence of wavelet sparsity formulation and sparse
Besov semi-norms. This allows us to numerically estimate a sparse Besov ‘weak-
type’ smoothness index of a given function in any representation space (e.g hidden
layer). Section 6 provides experimental results that demonstrate how our theory is
able to explain empirical findings in various scenarios.

2. Deep Learning approximation models

2.1. Deep Learning Architectures. The two main applications in classical ma-
chine learning are regression and classification. To obtain a unified approach, we
convert the classification problems into vector-valued regression problems as fol-
lows. For classification tasks, where each input is mapped into one of L classes, we
assign to each class 1 ≤ l ≤ L, the standard basis vector el. This vector valued
formulation assures that there is no bias, as the distances in RL between the class
vector representations are equivalent.

Neural network architectures can be highly complex, but in this paper we focus
on three simple models:

(i) Multilayer Perceptron (MLP) - An MLP network is a forward feed network

f̃ : Rn → RL

(2.1) f̃ = Φ(σK ◦ TK ◦ . . . σ1 ◦ T1),
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where each Tk is an affine linear transformation, Tk : Rnk → Rnk+1 , Tk(xk) =
Mkxk+bk, and the functions σk are pointwise nonlinear activation functions.
One of the most popular nonlinear activation functions is the Rectified Lin-
ear Unit (ReLU)

(2.2) ReLU(x) :=

{
0, −∞ < x < 0,

x, 0 ≤ x <∞.

Observe that an MLP network (2.1), with σk =ReLU, 1 ≤ k ≤ K, imposes
a piecewise linear approximation over polyhedral subdomains in the input
feature space.

Typically, in classification problems, the last layer is of dimension L and
the function Φ in (2.1) is the softmax

Φ(x1, · · · , xL) =
1∑L

i=1 e
xi
(ex1 , ex2 , · · · , exL),

which ‘normalizes’ the output of the network to be a vector whose com-
ponents are in the range [0, 1] and sum up to one. This design facilitates
training the network to output the probabilities of a sample to belong to
each of the L classes.

(ii) Convolution Neural Network (CNN) - A convolutional layer is in fact a
special case of an MLP layer, where the linear transformation Mk is broken
up to a finite number of compactly supported convolutional operations on
the input to the layer. This is useful if we are expecting ‘local’ correlations
in the input and in some cases allows to reduce the number of network
weights substantially. Applying convolutions requires to maintain the shape
of the input signal through the layers. So for example, if the input is an
image, the layers will be three dimensional, as a stack of two-dimensional
‘feature maps’ and the convolutions applied to the input layer k will be three
dimensional. The dimension of the stack of two-dimensional ‘feature maps’
in the output layer k + 1 is equal to the number of convolutions applied
between the layers, where each convolution produces a ‘feature map’.

(iii) Multiplicative Neural Network - Multiplicative networks provide a platform
for a polynomial type of nonlinearity which has been found to be extremely
powerful in the form of attention mechanisms as part of the Transformer
network architectures [28]. Here we describe one useful variant which can
be regarded as a multiplicative network of degree 2. Let xk ∈ Rnk be
an input vector to the k-th layer. For each component 1 ≤ i ≤ nk+1 of
the layer output xk+1 ∈ Rnk+1 , one selects as part of the architecture two
predetermined indices of the input space 1 ≤ j1(i), j2(i) ≤ nk, such that for
1 ≤ i ≤ nk+1,

xk+1(i) = Ak(i)xk(j1(i))xk(j2(i)) +

nk∑
j=1

Mk(i, j)xk(j) + bk(i),

where the vector Ak ∈ Rnk+1 is an additional set of network parameters.
In this variant, there is no additional nonlinearity applied as part of the
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transformation between layers. The multiplicative structure of degree 2 is
extremely useful in efficient representation of multivariate polynomials, lead-
ing to superior approximation properties over regular MLP networks. Also,
one can regard one of the inputs to the multiplication, for example xk(j1(i)),
as an adaptive context, or attention for the second input xk(j2(i)). This can
be regarded as an adaptive generalization of MLP, where the weights depend
on the input.

2.2. Deep Learning Approximation Spaces. One of the main goals of approx-
imation theory is the characterization of the approximation spaces of an approxi-
mation algorithm using function spaces [16]. To this day, the characterization of
deep learning approximation is still out of reach [20]. Still, one can certainly prove
Jackson-type theorems that bound the degree of approximation using smoothness
norms such as Sobolev or Besov. To this end, we first recall the Sobolev space
W r

p (Ω), 1 ≤ p ≤ ∞, Ω ⊆ Rn, consisting of functions with distributional derivatives
up to order r satisfying

∥f∥W r
p (Rn) :=

∑
|α|≤r

∥∂αf∥Lp(Ω) <∞.

The semi-norm is given by

|f |W r
p (Rn) = |f |r,p :=

∑
|α|=r

∥∂αf∥Lp(Ω).

In this work we are focused on cases where the dimension n is large, since even
the simplest classification network trained on a computer vision dataset consist-
ing of very small images of size 32 × 32, produces inner layer dimensions of up
to n = 16, 000 − 64, 000 neurons. However, when trying to approximate using a
network functions from the unit ball of W r

p ([0, 1]
n), one encounters the ‘curse of di-

mensionality’. That is, in the worst case, approximation with error ε > 0, requires
a network of size ∼ ε−n/r (e.g. there are lower bounds [34, 33]). In contrast, the
following result demonstrates, that with additional mild conditions, the size of the
network may depend linearly or quadratically on the dimension n (see definitions
in Subsection 2.1). These results are useful in cases where n >> r, that is, the
dimension is relatively higher than the given smoothness.

Theorem 2.1. [4] Let n ≥ 2, r ∈ N, f ∈ W r
2 (Rn) such that ∥f̂∥L1(Rn) <∞, where

f̂ is the Fourier transform of f and 0 < ε ≤ 1. Then there exist:

(i) A deep MLP network f̃MLP with ReLU activations, of depth O(n2ε−2/r) and

O(n2ε−(2+2/r)) neurons, such that

∥f − f̃MLP ∥L2([0,1]n) ≤ cmax(|f |2r,2, ∥f̂∥1)ε.

(ii) A deep multiplicative network f̃MUL of depth O(nε−1/r) and O(nε−(2+1/r))
neurons, such that

∥f − f̃MUL∥L2([0,1]n) ≤ cmax(|f |2r,2, ∥f̂∥1)ε.

Returning to our discussion of the characterization of the approximation spaces,
the main difficulty lies with the inverse embedding. It is not trivial to conclude the
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smoothness of a given function from the behavior of the degree of DL approximation.
Let us provide the well-known counter-example of the ‘sawtooth’ functions (see also
[12] for a more in depth discussion).

Let ∆1 : R → [0, 1] be defined by

(2.3) ∆1(x) :=


2x, 0 ≤ x < 1/2,

−2x+ 2, 1/2 ≤ x ≤ 1,

0, else.

We then define ∆j := ∆j−1 ◦ ∆1, for j ≥ 2. The sawtooth function ∆j has 2j−1

‘teeth’, as depicted in Figure 3. The function ∆1 has the following representation

∆1(x) := 2(x)+ − 2(2x− 1)+ + 2(x− 1)+

= σ(2x)− 2σ(2x− 1) + σ(2x− 2),

where σ is the ReLU nonlinear activation. Therefore, it can be realized using a
network block composed of two MLP layers

x→ (2x, 2x, 2x) + (0,−1,−2) → σ → (x1, x2, x3) → x1 − 2x2 + x3.

This implies that ∆j , j ≥ 1, can be realized as a composition of j blocks, which is
a network of depth 2j.

We would like to quantify the ‘weak-type’ smoothness of the representation layers
of the sawtooth family. To this end recall that for a function f ∈ Lτ (Ω), 0 < τ ≤ ∞,
h ∈ Rn and r ∈ N, we have the r-th order difference operator

∆r
h(f, x) = ∆r

h(f,Ω, x) :=

r∑
k=0

(−1)r+k

(
r
k

)
f(x+ kh),

where we assume the segment [x, x+ rh] is contained in Ω. Otherwise, we set
∆r

h (f,Ω, x) = 0. The modulus of smoothness of order r is defined by

ωr (f, t)τ := sup|h|≤t ∥∆r
h (f,Ω, ·)∥Lτ (Ω) , t > 0,

where for h ∈ Rn, |h| denotes the norm of h. We also denote

(2.4) ωr (f,Ω)τ := ωr

(
f,
diam (Ω)

r

)
τ

.

We also recall a subset of the classic Besov spaces defined by functions in Lτ (Ω),
0 < τ <∞, for which

(2.5) |f |Bα
τ (Ω) :=

(∫ ∞

0

(
t−αωr(f,Ω, t)τ

)τ dt
t

)1/τ

<∞,

with α > 0, r ≥ ⌊α⌋+ 1. The (quasi-)norm is then defined by

∥f∥Bα
τ (Ω) := ∥f∥Lτ (Ω) + |f |Bα

τ (Ω).

It can be shown [20] that for any α < 1/τ

(2.6) |∆j |Bα
τ
∼ 2jα.

This is a pro-typical example of a function that, one the one hand, has a compo-
sitional structure, that allows it to be represented by a relatively shallow network
of depth ∼ j and yet its Besov smoothness semi-norm is exponentially larger with
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Figure 3. Sawtooth function ∆4

j. That is, when initially inspecting the smoothness of the input function, it is not
obvious that it can be approximated or, as in this special case, even realized, by a
relatively shallow network.

In going further, let us denote by EN (f)p the degree of approximation of a neural
network with width of size ∼ n and depth of size N of a function f ∈ Lp([0, 1]

n).
Let us recall the approximation space Aγ

∞(Lp), defined by functions in Lp for which

|f |Aγ
∞(Lp) := sup

N
NγEN (f)p <∞.

Since ∆j can be realized by a network of width 3 and 2j layers, we have that

EN (∆j)p ∼

{
1, N < j/2,

0, N ≥ j/2.

Therefore
|∆j |Aγ

∞(Lp) ∼ jγ .

Combining this observation with (2.6), we see that we do not have a continuous
embedding of Bα

τ in Aγ
∞(Lp) for any values of α, γ > 0.

Yet, with the realization of f0 := ∆j as a neural network, we have that |f0|Bα
τ
∼

2jα and then, as we proceed trough the layers, the Besov semi-norm of the inner
layer representations decreases exponentially, since f2 = ∆j−1, f4 = ∆j−2, etc.

That is, |f2|Bα
τ
∼ 2(j−1)α, |f4|Bα

τ
∼ 2(j−2)α, etc.

Observe that one can easily construct more examples of such compositional
‘sawtooth-type’ functions. For example, let 1 < A < B <∞ and for each 1 ≤ i ≤ j,
pick a random parameter ai ∈ [A,B]. Next define the piecewise linear ‘tooth’ with
support in [0, 1] realized by

∆ai(x) := ai(x)+ − ai
ai − 1

(aix− 1)+ +
ai

ai − 1
(x− 1)+, 1 ≤ i ≤ j.

One has ∆ai(a
−1
i ) = 1. Then, the ‘sawtooth-type’ function

∆̃ := ∆a1 ◦ · · · ◦∆aj ,

also has 2j−1 teeth and also satisfies |∆̃|Bα
τ

∼ 2jα. The sawtooth with uniform

knots ∆j corresponds to the choices ai = 2, 1 ≤ i ≤ j. Furthermore, ∆̃ can also
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be realized using a network of depth ∼ j, with the Besov semi-norm of the inner
layer representation spaces also decaying exponentially. All this, with constants
that further depend on A,B.

In the general case, it is known that every piecewise linear function on [0, 1] over
N (possibly non-uniform) knots can be realized by a network of fixed width and
∼ N layers [12, 34]. Recall that in this work we are focused on the analysis of the
dynamics of the Besov smoothness across the inner layer representations. To this
end, we now show that one can provide a relatively simple and stable NN realization
of depth ∼ N of the linear spline such that the Bα

τ smoothness of the inner layer
representations is guaranteed to decrease at rate ≤ c(N −k+2)1/τ , k = 1, ..., N +2.

Theorem 2.2. Let f : [0, 1] → R be a continuous piecewise linear function with
N knots and let α < 1/τ . Then, there exists a the neural network realization of
f of width 5 and depth N + 3, where the Besov semi-norms of the inner layer
representations fk : Ω → R, Ω := [0, 1]4 × [−∥f∥∞, ∥f∥∞], 2 ≤ k ≤ N + 2, are
bounded by

(2.7) |fk|Bα
τ (Ω) ≤ c(α, τ, ∥f∥∞)(N − k + 2)1/τ .

Proof. Let f be a piecewise linear over [0, 1], with knots 0 < ξ1 < ξ2 < · · · < ξN < 1.
We augment the knots by −0.5 =: ξ−1 < 0 =: ξ0 < ξ1 < ξ2 < · · · < ξN < ξN+1 :=
1 < ξN+2 := 1.5. There are many ways to realize f using a ReLU network [12, 34].
Here, we use a construction that provides us with uniformly bounded inner layer
representation domains. We use the non-uniform linear B-spline representation

f(x) =
N+1∑
k=0

cjHj(x), x ∈ [0, 1],

where for 0 ≤ k ≤ N + 1

Hk(x) :=
f(ξk)

ξk − ξk−1
(x− ξk−1)+ − f(ξk)(ξk+1 − ξk−1)

(ξk − ξk−1)(ξk+1 − ξk)
(x− ξk)+

+
f(ξk)

ξk+1 − ξk
(x− ξk+1)+.

Observe that Hk has support in [ξk−1, ξk+1], with two linear pieces in [ξk−1, ξk] and
[ξk, ξk+1], interpolating H(ξk) = f(ξk).

The first inner layer is produced by the transformation

M1 = [1, 1, 1, 1, 0]T , b1 = [0,−ξ−1,−ξ0, ξ1, 0]T ,

followed by ReLU activation. Thus, the feature space of the first inner layer is

(x, (x− ξ−1)+, (x− ξ0)+, (x− ξ1)+, 0),

which provides a representation of f using this feature space by

f1(x, z1, z2, z3, 0) = f(x).
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The second layer is given by the transformation

M2 =


1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

0 f(ξ0)
ξ0−ξ−1

− f(ξ0)(ξ1−ξ−1)
(ξ0−ξ−1)(ξ1−ξ0)

f(ξ0)
ξ1−ξ0

1

 , b2 =


0

−ξ0
−ξ1
−ξ2
0

 ,
followed by ReLU activation. This gives a representation space

(x, (x− ξ0)+, (x− ξ1)+, (x− ξ2)+,H0(x)),

which we may parameterize as

(x, z1, z2, z3, y),

to obtain

f2(x, z1, z2, z3, y) = y +

N+1∑
k=1

Hk(x) = f(x).

In general, the k − th inner layer, 2 ≤ k ≤ N + 3, is produced by

Mk =


1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

0
f(ξk−2)

ξk−2−ξk−3
− f(ξk−2)(ξk−1−ξk−3)

(ξk−2−ξk−3)(ξk−1−ξk−2)
f(ξk−2)

ξk−1−ξk−2
1

 , bk =


0

−ξk−2

−ξk−1

−ξk
0

 ,
followed by ReLU activation. This gives a representation space

(x, (x− ξk−1)+, (x− ξk)+, (x− ξk+1)+,
k−2∑
j=0

Hj(x)),

which we may use to reproduce f by

(2.8) fk(x, z1, z2, z3, y) = y +
N+1∑
j=k−1

Hj(x) = f(x).

We see that the y component serves as a collocation channel through the network.
This means that as we proceed trough the layers, the number of nonlinearities in
the feature spaces of fk decreases linearly with k. We claim this implies the decrease
(2.7) on the bound of the |fk|Bα

τ (Ω) with k. Indeed, for any α > 0, let us choose
r ≥ max(⌊α⌋ + 1, 2). It is well known that choosing any r ≥ ⌊α⌋ + 1 gives an
equivalent Besov norm.

We use the representation (2.8) to bound the semi-norms |fk|Bα
τ
. Denote smin :=

minj=−1,...,N+1{ξj+1 − ξj} > 0, fix 2 ≤ k ≤ N + 1, let 0 < h1 < smin/r and
h := (h1, 0, 0, 0). The function fk has N − k + 2 knots in the first coordinate.
Denote

Sh := {x = (x1, ..., x5) ∈ Ω : [x1, x1 + rh1] does not intersect a knot}.
Then

|Sh| ≥ 1− (N − k + 2)rh1.
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Since ∆r
h(fk, x) = 0, for x ∈ Sh and r ≥ 2∫

Ω
|∆r

h(fk, x)|τdx =

∫
Ω\Sh

|∆r
h(fk, x)|τdx

≤ c∥f∥1+τ
L∞[0,1](N − k + 2)h1.

This implies for t < smin/r

ωr(fk, t)
τ
Lτ (Ω) = sup

|h|≤t
∥∆r

h(fk, ·)∥ττ

= sup
h=(h1,0,0,0,0),|h1|≤t

∥∆r
h(fk, ·)∥ττ

≤ c∥f∥τL∞[0,1](N − k + 2)t.

Using the condition α < 1/τ∫ smin/r

0

(
t−αωr(fk, t)Lτ (Ω)

)τ dt
t

≤ c∥f∥1+τ
L∞[0,1](N − k + 2)

∫ smin/r

0
t−ατdt

≤ c(α, τ, f)(N − k + 2).

For smin/r < t ≤ 1 and τ ≤ 1 we have

ωr(fk, t)
τ
τ ≤

(
r

smin
+ 1

)r

ωr(fk, smin/r)
τ
τ

≤ c(α, τ, f)(N − k + 2).

Using also the fact that Ω is bounded∫ ∞

smin/r

(
t−αωr(fk, t)Lτ (Ω)

)τ dt
t

≤ c(α, τ, f)

∫ 1

smin/r

(
t−αωr(fk, t)Lτ (Ω)

)τ dt
t

≤ c(α, τ, f)(N − k + 2).

We may conclude that |fk|Bα
τ (Ω) ≤ c(α, τ, f)(N − k + 2)1/τ . □

In this work, we analyze the phenomena of improved smoothness in feed forward
neural networks’ representation layers using sparse Besov spaces that are equiva-
lent to classic Besov spaces in lower dimensions, yet are more adequate in higher
dimensions.

3. Wavelet decomposition of Random Forests

To overcome the challenge of analyzing the smoothness of high dimensional rep-
resentation spaces of datasets (e.g. inner layers in DL), we apply the construction of
wavelet decompositions of Random Forests [18]. The Random Forest (RF) [5, 9, 22]
introduced by Breiman [7, 6] as a machine learning algorithm, is in fact a powerful
adaptive sparse piecewise polynomial approximation algorithm for high dimensional
problems. The forest overcomes the ‘greedy’ nature and high variance of a single
decision tree. The geometric wavelets [13, 18] used to decompose the forest allow
sparse representations and have many properties that are shared with the classical
wavelets [11, 27] that are not computationally feasible in high dimensions (in di-
mension n = 100, 000, there are 2100,000 − 1 classic tensor wavelet ‘types’). When
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combined, the wavelet decomposition of the RF unravels the sparsity of the underly-
ing function and establishes an order of the RF nodes from ‘important’ components
to ‘negligible’ noise. Therefore, the method provides a better understanding of any
constructed RF. As we shall see, our motivation to use these wavelet decompositions
is the equivalence between sparse Besov smoothness over forests and the wavelet
sparsity (see (4.5)).

We begin with an overview of single trees. In statistics and machine learning
the construction is called a Decision Tree or the Classification and Regression Tree
(CART) [8, 1, 5, 22]. Assume we are given a real-valued function f ∈ Lp([0, 1]

n) or
a discrete dataset {xi ∈ [0, 1]n, f(xi)}i∈I (the generalization to any convex bounded
domain Ω0 ⊂ Rn is trivial). The goal is to compute an adaptive piecewise polyno-
mial approximation of f , even for large dimensions n (potentially in the range of
hundreds of thousands). To this end, we subdivide the initial domain Ω0 := [0, 1]n

into two subdomains, e.g. by intersecting it with a hyper-plane. The goal is to find
a subdivision that approximately minimize a given cost function. This subdivision
process then continues recursively on the subdomains until some stopping criterion
is met, which in turn, determines the leaves of the tree. We now describe one in-
stance of the cost function which is related to minimizing variance. At each stage
of the subdivision process, at a certain node of the tree, the algorithm finds, for the
convex domain Ω ⊂ Rn associated with the node:

(i) A partition by an hyper-plane into two convex subdomains Ω′,Ω′′, Ω′∪Ω′′ =
Ω.

(ii) Two multivariate polynomials QΩ′ , QΩ′′ ∈ Πr−1 (Rn), of fixed (typically low)
total degree r − 1.

The partition and the polynomials are chosen to minimize the following quantity

(3.1) ∥f −QΩ′∥pLp(Ω′) + ∥f −QΩ′′∥pLp(Ω′′) .

For the theory that follows, we require that the polynomials QΩ′ , QΩ′′ provide local
near best approximation on their respective subdomains. In applications, where the
dataset is discrete, consisting of feature vectors xi ∈ [0, 1]n, i ∈ I , with given values
f (xi), a discrete functional is minimized over all partitions Ω′ ∪ Ω′′ = Ω

(3.2)
∑
xi∈Ω′

|f (xi)−QΩ′(xi)|p +
∑

xi∈Ω′′

|f (xi)−QΩ′′(xi)|p.

Observe that for any given subdividing hyperplane, the approximating polyno-
mials in (3.2) can be uniquely determined for p = 2, by least square minimization.
For the order r = 1, the approximating polynomials are nothing but the mean of
the function values over each of the subdomains

QΩ′ (x) = CΩ′ =
1

# {xi ∈ Ω′}
∑
xi∈Ω′

f (xi),

QΩ′′ (x) = CΩ′′ =
1

# {xi ∈ Ω′′}
∑

xi∈Ω′′

f (xi).

In many applications of decision trees, the high-dimensionality of the data does not
allow to search through all possible subdivisions. As in our experimental results, one
may restrict the subdivisions to the class of hyperplanes aligned with the main axes.
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In contrast, there are cases where one would like to consider more advanced form of
subdivisions, where they take certain hyper-surface form or even non-linear forms
through kernel Support Vector Machines. Our paradigm of wavelet decompositions
can support in principle all of these forms.

Random Forest (RF) is a popular machine learning tool that collects decision
trees into an ensemble model. The trees are constructed independently in a diverse
fashion and prediction is done by a voting mechanism among all trees. A key element
[7], is that large diversity between the trees reduces the ensemble’s variance. There
are many RFs variations that differ in the way randomness is injected into the model,
e.g bagging, random feature subset selection and the partition criterion. Bagging
[6] is a method that produces partial replicates of the training data for each tree.
A typical approach is to randomly select for each tree a certain percentage of the
training set (e.g. 80%).

Additional methods to inject randomness can be achieved at the node partitioning
level. For each node, we may restrict the partition criteria to a small random subset
of the parameter values. A typical selection is to search for a partition from a
random subset of

√
n features [7]. This technique is also useful for reducing the

amount of computations when searching the appropriate partition for each node.
Bagging and random feature selections are not mutually exclusive and can be used
together.

For j = 1, ..., J , one creates a tree Tj , based on a subset of the data, Xj . One then
provides a weight (score) wj to the tree Tj , based on the estimated performance of

the tree, where
∑J

j=1wj = 1. In the supervised learning, one typically uses the

remaining data points xi /∈ Xj to evaluate the performance of Tj . For simplicity, we
will mostly consider in this paper the choice of uniform weights wj = 1/J . For any

point x ∈ Ω0, the approximation associated with the jth tree, denoted by f̃j (x), is
computed by finding the leaf Ω ∈ Tj in which x is contained and then evaluating

f̃j (xi) := QΩ (x), where QΩ is the corresponding polynomial associated with the
decision node Ω. One then assigns the RF approximate value to any point x ∈ Ω0

by

f̃ (x) =
J∑

j=1

wj f̃j (x).

As already discussed, in classification problems, each input training point xi ∈ Ω0

is assigned with a class Cl (xi). To convert the problem to the ‘functional’ setting
described above, one assigns to the l-th class the standard basis vector el ∈ RL,
1 ≤ l ≤ L. Thus, we may assume that the input data is in the form

{xi, Cl (xi)}i∈I ∈
(
Rn,RL

)
.

In this case, if we choose approximation using constants (r = 1), then the calculated

mean over any subdomain Ω is in fact a point E⃗Ω ∈ RL. Obviously, any vector
value v = (v1, ..., vL) ∈ RL can be mapped back to a class, along with an estimated
confidence level, by calculating argmaxLi=1 vi.

Next, we recall the construction of a wavelet decomposition of a forest [18]. Let
Ω′ be a child of Ω in a tree T , i.e. Ω′ ⊂ Ω and Ω′ was created by a partition of Ω.
Denote by 1Ω′ , the indicator function over the child domain Ω′, i.e. 1Ω′ (x) = 1,
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if x ∈ Ω′ and 1Ω′ (x) = 0, if x /∈ Ω′. We use the polynomial approximations
QΩ′ , QΩ ∈ Πr−1 (Rn), computed by the local minimization (3.1) and define

(3.3) ψΩ′(x) := ψΩ′ (f) (x) := 1Ω′(x) (QΩ′(x)−QΩ(x)) ,

as the geometric wavelet associated with the subdomain Ω′ and the function f , or
the given discrete dataset {xi, f (xi)}i∈I . Each wavelet ψΩ′ , is a ‘local difference’
component that belongs to the detail space between two levels in the tree, a ‘low
resolution’ level associated with Ω and a ‘high resolution’ level associated with
Ω′. Also, the wavelets (3.3) have the ‘zero moments’ property, i.e., if the response
variable is sampled from a polynomial of degree r− 1 over Ω, then our local scheme
will compute QΩ′ (x) = QΩ (x) = f (x), ∀x ∈ Ω, and therefore ψΩ′ = 0. We also
define ψΩ0 := QΩ0 .

Under certain mild conditions on the tree T and the function f , we have by the
nature of the wavelets, the ‘telescopic’ sum of differences

(3.4) f =
∑
Ω∈T

ψΩ, ψΩ0 := QΩ0 .

For example, (3.4) holds in Lp-sense, 1 ≤ p < ∞, if f ∈ Lp (Ω0) and for any
x ∈ Ω0 and series of domains Ωl ∈ T , each on a level l, with x ∈ Ωl , we have that
lim
l→∞

diam (Ωl) = 0.

The norm of a wavelet supported on a child Ω′ of Ω is computed by

∥ψΩ′∥pp =
∫
Ω′

(QΩ′ (x)−QΩ (x))p dx.

For the case r = 1, where QΩ (x) = CΩ and QΩ′ (x) = CΩ′ this simplifies to

(3.5) ∥ψΩ′∥pp = |CΩ′ − CΩ|p
∣∣Ω′∣∣ ,

where |Ω′| denotes the volume of Ω′. Observe that for r = 1, the subdivision process
for partitioning a node by minimizing (3.1) is equivalent to maximizing the sum of
squared norms of the wavelets that are formed in that partition (see [18]).

Recall that our approach is to convert classification problems into a ‘functional’
setting by assigning the class labels to vector values in RL. In such cases of vector-
valued functions, choosing r = 1, the wavelet ψΩ′ : Rn → RL is

ψΩ′(x) = 1Ω′(x)
(
E⃗Ω′ − E⃗Ω

)
,

and its norm is given by

(3.6) ∥ψΩ′∥pp =
∥∥∥E⃗Ω′ − E⃗Ω

∥∥∥p
l2(RL)

∣∣Ω′∣∣ ,
where for v⃗ ∈ RL,∥v⃗∥l2 :=

√∑L
i=1 v

2
i .

Using any given weights assigned to the trees, we obtain a wavelet representation
of the entire RF

(3.7) f̃ (x) =
J∑

j=1

∑
Ω∈Tj

wjψΩ (x).
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Figure 4. Selection of an M-term approximation from the entire forest.

The theory tells us that, just as in the classical case [14], sparse approximation is
achieved by reordering the wavelet components based on their norm [18]

(3.8) wj(Ωk1)

∥∥∥ψΩk1

∥∥∥
p
≥ wj(Ωk2)

∥∥∥ψΩk3

∥∥∥
p
≥ · · · ,

with the notation Ω ∈ Tj ⇒ j (Ω) = j. Thus, the adaptive M-term approximation
of a RF is

(3.9) fM (x) :=

M∑
m=1

wj(Ωkm )ψΩkm
(x).

Observe that, contrary to most existing tree pruning techniques [25], where each
tree is pruned separately, the above approximation process applies a ‘global’ pruning
strategy where the significant components can come from any node of any of the
trees at any level. For simplicity, one could choose wj = 1/J , and obtain

(3.10) fM (x) =
1

J

M∑
m=1

ψΩkm
(x).

Figure 4 depicts an M-term (3.10) selected from an RF ensemble. The red colored
nodes illustrate the selection of the M wavelets with the highest norm values from
the entire forest. Observe that they can be selected from any tree at any level, with
no connectivity restrictions.

4. Geometric multivariate function space theory

An important research area of approximation theory, pioneered by Pencho Petru-
shev, is the characterization of adaptive geometric approximation algorithms by
generalizations of the classic isotropic Besov spaces to sparse Besov-type spaces
[10, 13, 24] that are more adequate for unstructured data in high-dimensions. We
begin by defining the ‘weak-type’ sparse Besov smoothness of a function, subject to
the geometry of a single (possibly adaptive) tree

Definition 4.1. For α < 1/τ , r ≥ 1, f ∈ Lτ (Ω0), Ω0 ⊂ Rn, and tree T over Ω0,
we define the associated sparse tree Besov smoothness in Bα,r

τ (T ), r ∈ N, by

(4.1) |f |Bα,r
τ (T ) :=

(∑
Ω∈T

(
|Ω|−α ωr (f,Ω)τ

)τ)1/τ

,

where |Ω| denotes the volume of Ω.
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In cases where we wish to approximate in the p-norm, 0 < p < ∞ we shall
typically set 1/τ := α + 1/p. The higher the index α for which (4.1) is finite,
the smoother the function is. Also, the above definition generalizes the classical
function space theory of Besov spaces, where the tree partitions are non-adaptive.
In fact, classical Besov spaces are a special case, where the tree is constructed
(non-adaptively) by partitioning over dyadic knots such that at levels which are
multiples of n one obtains dyadic cubes. For these special dyadic trees TD, one has
Bα
τ (TD) ∼ Bαn

τ , where the latter space is the classic Besov semi-norm defined by
(2.5).

We note that we do not impose the condition r > α for (4.1) as we have done for
(2.5). In fact, as we shall see below, for most part we will use r = 1. We remind
the reader that in certain configurations of classical Besov spaces Bα,r

τ , where r < α
and 1 ≤ τ ≤ ∞, we get a trivial space [16] (e.g. polynomials of degree r−1 when Ω
is a segment and {0} for Ω = R). However, this is not the case here, since whenever
α ≥ 1, we immediately have τ < 1. For example, any f(x) := 1Ω̃(x), where Ω̃ ⊂ Rn

is a compact domain with a smooth boundary, satisfies f ∈ Bα,r
τ (TD), for any r ≥ 1

and α < 1/τ .

For a given forest F = {Tj}Jj=1 and weights wj = 1/J , the α sparse Besov semi-

norm associated with the forest is

(4.2) |f |Bα,r
τ (F) :=

1

J

 J∑
j=1

|f |τBα,r
τ (Tj)

1/τ

.

Definition 4.2. Given a (possibly adaptive) forest representation, we define the
sparse Besov smoothness index of f by the maximal index α for which (4.2) is finite.

Remark It is known that different geometric approximation schemes are charac-
terized by different flavors of Besov-type smoothness. In this work, for example, all
of our experimental results compute smoothness of representations using partitions
along the main n axes. This restriction may lead, in general, to potentially lower
Besov smoothness of the underlying function and lower sparsity of the wavelet rep-
resentation. Yet, the theoretical definitions and results of this paper can also apply
to more generalized schemes where, for example, tree partitions are performed using
arbitrary hyper-planes. In such a case, the smoothness index of a given function
may increase.

Next, for a given tree T and parameter 0 < τ < p, we denote the τ -sparsity of
the tree by

(4.3) Nτ (f, T ) =

 ∑
Ω ̸=Ω0,Ω∈T

∥ψΩ∥τp

1/τ

.
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Let us further denote the τ -sparsity of a forest F , by

Nτ (f,F) :=
1

J

 J∑
j=1

∑
Ω ̸=Ω0,Ω∈Tj

∥ψΩ∥τp

1/τ

=
1

J

 J∑
j=1

Nτ (f, Tj)τ
1/τ

.

In the setting of a single tree constructed to represent a real-valued function and
under mild conditions on the partitions (see remark after (3.4) and condition (4.7)),
the theory of [13] proves the equivalence

(4.4) |f |Bα,r
τ (T ) ∼ Nτ (f, T ) .

Here, we assume 1/τ := α+1/p and that the wavelets are local differences of near-
best local polynomial approximations from the space of polynomials of degree r− 1
(see (3.1)). This implies that there are constants 0 < C1 < C2 < ∞, that depend
on parameters such as α, p, n, r and ρ in condition (4.7) below, such that

C1 |f |Bα,r
τ (T ) ≤ Nτ (f, T ) ≤ C2 |f |Bα,r

τ (T ) .

Therefore, we also have for the forest model

(4.5) |f |Bα,r
τ (F) ∼ Nτ (f,F) .

Next, we present a simple invariance property of the smoothness analysis under
higher dimension embedding.

Lemma 4.3. Let f : [0, 1]n → RL, f ∈ Lp([0, 1]
n) and let F be a forest approxima-

tion of f . For any m ≥ 0, let x̃ = (x, 0, ..., 0) ∈ [0, 1]n+m, x ∈ [0, 1]n. Let us further

define f̃(x̃) := f(x). Next, denote by F̃ a forest defined over [0, 1]n+m which is the
natural extension of F , using the same trees with same partitions over the first n
coordinates. Then, for r = 1 and any τ > 0,

Nτ

(
f̃ , F̃

)
= Nτ (f,F) .

Proof. Let Ω′ ∈ F be one the domains of the trees of F , with wavelet of the type

ψΩ′(x) = 1Ω′(x)
(
E⃗Ω′ − E⃗Ω

)
.

Recall that Nτ (f,F) is the lτ norm of the sequence of the wavelet norms given by
(3.6).

Now, for each domain Ω′ ∈ F and the corresponding domain Ω̃′ ∈ F̃ , using the
normalization of the feature spaces ensures that

(4.6)
∣∣Ω′∣∣ = ∣∣Ω′∣∣× |[0, 1]m| =

∣∣∣Ω̃′
∣∣∣ .

Since the vector means remain unchanged under the higher dimensional embedding

E⃗Ω′ = E⃗Ω̃′ , we have using (4.6) and (3.6)

∥ψΩ′∥Lp([0,1]n)
=
∥∥ψΩ̃′

∥∥
Lp([0,1]n+m)

.

This gives Nτ

(
f̃ , F̃

)
= Nτ (f,F). □
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Remark Note that the above invariance property also holds if the additional m
redundant features are intertwined with the n significant features that are ‘detected’
and used for tree subdivisions during the construction of the random forest.

In the setting in which we wish to apply our function theoretical approach, we are
comparing smoothness of representations over different layers of DL networks. This
implies that we are analyzing and comparing the smoothness of a set of functions
fk, each over a different representation space of a different dimension nk. This
is, in some sense, non-standard in function space theory, where the space, or at
least the dimension, over which the functions have their domain is typically fixed.
Specifically, observe that the equivalence (4.5) depends on the dimension n of the
feature space. To this end, we add to the theory ‘dimension-free’ analysis for the
case r = 1.

We begin with a Jackson-type estimate for the degree of the adaptive wavelet
forest approximation, which we keep ‘dimension free’ for the case r = 1. To this
end, let F = {Tj}Jj=1 be a forest. Assume there exists a constant 0 < ρ < 1, such

that for any domain Ω ∈ F on a level l and any domain Ω′ ∈ F , on the level l + 1,
with Ω ∩ Ω′ ̸= ∅, we have

(4.7)
∣∣Ω′∣∣ ≤ ρ |Ω| .

For any r ≥ 1, denote formally f =
∑
Ω∈F

wj(Ω)ψΩ, and assume that Nτ (f,F) < ∞,

where
1

τ
= α+

1

p
.

Under these conditions, it is proved in [18] that f ∈ Lp, and that the following
Jackson estimate holds for the wavelet forest M -term approximation (3.9)

(4.8) σM (f) := ∥f − fM∥p ≤ C (p, α, ρ, r, n) JM−αNτ (f,F).

Here, we observe that for the case r = 1, one can remove the dependence of the
constant on the dimension

Theorem 4.4. Under the above conditions on F , for r = 1 and the M -term ap-
proximation (3.9) we have

(4.9) σM (f) := ∥f − fM∥p ≤ C (p, α, ρ) JM−αNτ (f,F).

Proof. We essentially follow the proof in [18]. To see (4.9) we observe that the
dimension n comes into play in the Nikolskii-type estimate for bounded convex
domains Ω ⊂ Rn, and r ≥ 1

∥ψΩ∥∞ ≤ c(p, n, r)|Ω|−1/p ∥ψΩ∥p .

However, for the special case of r = 1 this actually simplifies to

∥ψΩ∥∞ = |Ω|−1/p ∥ψΩ∥p .

□

Using the Jackson estimate (4.8) and the equivalence (4.5), we get for any r ≥ 1

σM (f) ≤ C (p, α, ρ, n) JM−α |f |Bα,r
τ (F) ,
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which is not a ‘dimension-free’ Jackson estimate, as the one will show below for
r = 1 (see (4.14)).

Next, to allow our smoothness analysis to be ‘dimension free’ we modify the
modulus of smoothness (2.4) for r = 1 and use the following form of ‘averaged
modulus’

Definition 4.5. For a function f : Ω → RL we define

(4.10) w1(f,Ω)τ :=

(∫
Ω

∥∥∥f (x)− E⃗Ω

∥∥∥τ
l2(RL)

dx

)1/τ

,

where E⃗Ω is the average of f over Ω.

It is well known that averaged forms of the modulus are equivalent to the form
(2.4), but with constants that depend on the dimension. However, replacing (2.4)
with (4.10) allows us to produce ‘dimension-free’ analysis. We use (4.10) to define

|f |B̃α
τ (T ) :=

(∑
Ω∈T

(
|Ω|−αw1(f,Ω)τ

)τ)1/τ

,

|f |B̃α
τ (F) :=

1

J

 J∑
j=1

|f |τB̃α
τ (Tj)

1/τ

.

We can now show

Theorem 4.6. Let f : Ω0 → RL. Then the following equivalence holds for the case
r = 1,

(4.11) |f |B̃α
τ (F) ∼ Nτ (f,F) ,

where 1/τ = α+1/p, and the constants of equivalence depend on α, τ, ρ, but not n.

Proof. Obviously, it is sufficient to prove the equivalence for a single tree T . Observe
that condition (4.7) also implies that for any Ω′ ∈ T , with parent Ω, we also have

|Ω| ≤ (1− ρ)−1
∣∣Ω′∣∣ .
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We use this as well as (3.6) to prove the first direction of the equivalence as follows

Nτ (f, T )τ =
∑

Ω′ ̸=Ω0,Ω′∈T
∥ψΩ′∥τp

=
∑

Ω′ ̸=Ω0,Ω′∈T ,
Ω parent of Ω′

(∣∣Ω′∣∣1/p∥∥∥E⃗Ω′ − E⃗Ω

∥∥∥
l2(RL)

)τ

=
∑

Ω′ ̸=Ω0,Ω′∈T

(∣∣Ω′∣∣1/p−1/τ∥ψΩ′∥τ
)τ

≤ c (τ)
∑

Ω′ ̸=Ω0,Ω′∈T
,Ω parent of Ω′

{(∣∣Ω′∣∣−α
∥∥∥∥∥∥∥f (·)− E⃗Ω′

∥∥∥
l2(RL)

∥∥∥∥
Lτ (Ω′)

)τ

+

(∣∣Ω′∣∣−α
∥∥∥∥∥∥∥f (·)− E⃗Ω

∥∥∥
l2(RL)

∥∥∥∥
Lτ (Ω′)

)τ}

≤ c (τ, ρ, α)
∑
Ω∈T

(
|Ω|−α

∥∥∥∥∥∥∥f (·)− E⃗Ω

∥∥∥
l2(RL)

∥∥∥∥
Lτ (Ω)

)τ

= c (τ, ρ, α)
∑
Ω∈T

(
|Ω|−αw1(f,Ω)τ

)τ
= c |f |τB̃α

τ
.

We now prove the other direction. We assume 0 < τ ≤ 1 (the case 1 < τ < ∞ is
similar). For any Ω ∈ T we have

(4.12) w1 (f,Ω)
τ
τ ≤

∑
Ω′∈T ,Ω′⊂Ω

∥ψΩ′∥ττ ,

by the following estimates

w1 (f,Ω)
τ
τ =

∫
Ω

∥∥∥∥∥∑
Ω′∈T

ψΩ′ (x)− E⃗Ω

∥∥∥∥∥
τ

l2(RL)

dx

=

∫
Ω

∥∥∥∥∥∥
∑
Ω′∈T

ψΩ′ (x)−
∑

Ω′∈T ,Ω⊆Ω′

ψΩ′ (x)

∥∥∥∥∥∥
τ

l2(RL)

dx

=

∫
Ω

∥∥∥∥∥∥
∑

Ω′∈T ,Ω′⊂Ω

ψΩ′ (x)

∥∥∥∥∥∥
τ

l2(RL)

dx

≤
∑

Ω′∈T ,Ω′⊂Ω

∥ψΩ′∥ττ .
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Also, observe that by condition (4.7), for any Ω′ ∈ T

(4.13)
∑

Ω∈T ,Ω′⊂Ω

(
|Ω′|
|Ω|

)ατ

≤
∞∑
k=1

ρkατ ≤ c (ρ, α, τ) .

We apply (4.12) and (4.13) to conclude

|f |τB̃α
τ (T )

≤
∑
Ω∈T

|Ω|−ατ
∑

Ω′∈T ,Ω′⊂Ω

∥ψΩ′∥ττ

=
∑
Ω∈T

∑
Ω′∈T ,Ω′⊂Ω

(
|Ω′|
|Ω|

)ατ(∣∣Ω′∣∣−α∥ψΩ′∥τ
)τ

=
∑

Ω′ ̸=Ω0,Ω′∈T

(∣∣Ω′∣∣−α∥ψΩ′∥τ
)τ ∑

Ω∈T ,Ω′⊂Ω

(
|Ω′|
|Ω|

)ατ

≤ c (α, τ, ρ)
∑

Ω′ ̸=Ω0,Ω′∈T

(∣∣Ω′∣∣−α∣∣Ω′∣∣1/τ−1/p∥ψΩ′∥p
)τ

= c (α, τ, ρ)
∑

Ω′ ̸=Ω0,Ω′∈T
∥ψΩ′∥τp

= cNτ (f, T )τ .

□

The equivalence (4.11) together with (4.9) imply that for r = 1 we do have a
‘dimension-free’ Jackson estimate

(4.14) σM (f) ≤ C (p, α, ρ) JM−α |f |B̃α
τ (F) .

5. Smoothness analysis of the representation layers in deep learning
networks

We now explain how the theory presented in Section 4 is used to estimate the
‘weak-type’ smoothness of a given function in a given representation layer. Recall
from the introduction that we create a representation of images at layer 0 by con-
catenating the

√
n0 rows of pixel values of each grayscale image, to create a vector

of dimension n0 (or 3 × n0 for a color image). We also normalize the pixel values
to the range [0, 1]. We then transform the class labels into vector-values in the
space RL by assigning each label l, the standard basis vector el ∈ RL (see Section
3). Thus, the images are considered as samples of a function f0 : [0, 1]n0 → RL.
In the same manner, we associate with each k-th layer of a DL network, a func-
tion fk : [0, 1]nk → RL, where nk is the number of features/neurons at the k-th
layer. The samples of fk are obtained by applying the network on the original im-
ages up the given k-th layer. For example, in a convolution layer, we capture the
representations after the cycle of convolution, non-linearity and pooling. We then
extract vectors created by normalizing and concatenating the feature map values
corresponding to the images. Recall that although the functions {fk} are embedded
in different dimensions {nk}, through the simple normalizing of the features, our
method is able to assign smoothness indices to each layer that are comparable.
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Next we describe how we estimate the smoothness of each function fk using the
method of [3]. We compute a random forest Fk over the samples of fk with the
choice r = 1 and then apply the wavelet decomposition of the RF (see Section 3).
We work under the assumption that at each layer, we have a sufficient number of
samples relative to k-th feature space dimension nk and that we construct a forest
Fk which is diverse enough to capture the ‘geometry’ of fk.

With p = 2, for each k, the goal is to numerically estimate

τ∗k := inf
0<τ<2

{τ | Nτ (fk,Fk) <∞}.

Based on the either the equivalence (4.5) or the dimension free equivalence (4.11)
for r = 1, this gives an estimate for critical (optimal) smoothness of each fk

(5.1) α∗
k =

1

τ∗k
− 1

2
.

It is obvious that for any f ∈ L2([0, 1]
n) and random forest F built adaptively

to fit it, the univariate function Nτ (f,F), as function of τ is monotonically non-
increasing. Yet, in discrete setting, there is no value 0 < τ < 2, however small, for
which Nτ (f,F) = ∞. So the estimate of a ‘critical’ τ∗ is a numeric estimate for
where the derivative (as a function of τ)

d

dτ
Nτ (f,F) =

1

J

d

dτ

 J∑
j=1

∑
Ω ̸=Ω0,Ω∈Tj

∥ψΩ∥τ2

1/τ

,

crosses some lower threshold.
First, we compute a series of samples Nτi(f,F), for a set of discrete evenly spaced

samples {τi}Mi=1, 0 < τi < 2. We then approximate, using the samples, the numerical
derivatives

N ′
i ≈

d

dτ
Nτi(f,F), 1 ≤ i ≤M.

We use the angles of the numerical derivatives

θi := arctan(N ′
i),

to estimate the transition index τ∗ which is associated with an infinite derivative, or
equivalently, an angle of −π/2. To this end, we use two meta parameters: εlow, εhigh,
and define

S := {τi : −
π

2
+ εlow ≤ θi ≤ −π

2
+ εhigh}.

We then approximate the transition index by

τ∗ ≈ −εlow +
1

|S|
∑
τi∈S

τi.

A demonstration is shown in Figure 5.
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Figure 5. Example of plots of N ′
τ and θ(N ′

τ )

6. Experimental Results: Smoothness analysis across DL
representation layers

Our goal is to show how the theory laid out in this paper enables to look into the
‘black box’ of a neural network and analyze its performance. For all the experiments
presented in this section 3 different neural networks were trained using the same
training set, each time with different initialization seeds. Then, for each of the
3 networks, we applied the numerical computation of the representation layers’
smoothness (5.1) using wavelet decompositions of RFs of three trees each, with
maximal depth of 15 layers. The hyper parameters of Section 5 were selected as
εlow = 0.1, εhigh = 0.4. The smoothness estimates for each layer were averaged
over the 3 trained models. It is important to note that in the results below the
function space smoothness estimates are performed using only the training dataset.
Then, testing of the accuracy of the models is performed using out of bag testing
dataset. Nevertheless, as we shall see below, there is a strong correlation between
the rate of improvement of smoothness across the model’s intermediate layers and
its performance in the testing phase.

6.1. Analysis of a classic well-performing convolutional neural network.
We start off with a simple example of a relatively simple dataset and an appropriate
and well functioning neural network architecture. In this example we use MNIST-
1D [19], a well known univariate equivalent of the classic MNIST image dataset. In
MNIST-1D, as opposed to MNIST, the signals are intertwined in the input space,
and are then much less separable. We apply to it a classic convolutional network
with 7 layers (see Subsection 2.1). The question is, how does the representation
smoothness improve across layers and throughout the training phase? To this end
we monitor for each k-th layer, the smoothness α∗

k (see (5.1)) and record it every 10
epochs of the training phase. The results are shown in figure 6. While obviously the
smoothness of the input dataset at layer 0 is constant throughout the training, it is
clear that the smoothness improves as we progress forward through the intermediate
layers and through the training. Also notice the correlation with the testing result
depicted on the right hand side, although the smoothness of the intermediate layers
is numerically estimated using only the training data.
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Figure 6. Smoothness improvement through intermediate layers
and the training phase

6.2. Analysis of a ‘problematic’ neural network architecture. In most cases,
where there is a problem with the chosen network architecture, we can only hope-
lessly observe the bad testing result. This is especially frustrating in cases where
the problematic architecture is still able to overfit the training data and produce
a low training loss. To demonstrate this, we use the well known Fashion-MNIST
image dataset and create two types of classification models. The first model is based
on a ‘sensible’ architecture of convolutional residual networks [23]. For the second
model, we deliberately construct an architecture that does not make sense from
a computer-theoretical perspective. Specifically, we construct a network where the
types of layers alternate between convolutional and MLP. Thus, every convolutional
layer is followed by reshaping of the 3D feature space (sequence of 2D feature maps)
into a vector and then an MLP layer. In Figure 7 we see the analysis of the two
models. We see that the ‘bad’ architecture does not support improvement of the
intermediate layers which leads to low testing performance.

6.3. Analysis of performance of activation functions. In Subsection 2.1 we
reviewed the role of the nonlinear activation functions and provided some examples.
Here we use again the MNIST-1D dataset and fix a convolutional neural network as
the classification model, where the only hyper-parameter we change for each run is
the activation function. Suppose we are trying to create a new activation function,
by using a simple step function:

σH(x) =

{
1, if x > 0.

0, otherwise.

At face value, this seems a potentially problematic activation function since it does
not output any magnitude values, only simple activation of ‘0’ or ‘1’. Other non-
linearities we analyze here are the ReLU (2.2) its variants Leaky ReLU and GELU
and the Sigmoid. Figure 8 shows the dominance of the ReLU activation over other
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Figure 7. Analysis of Fashion-MNIST classification models: a
‘good’ ResNet architecture and a ‘bad’ alternating architecture.

Figure 8. Analysis of MNIST-1D classification models: Different
nonlinear activation functions.

activations. The ReLU variants - Leaky ReLU and GELU are relatively close in
performance. The Sigmoid is indeed far lower in terms of α∗, and we see a dip
during train. Again, we see a clear correlation of the architectural smoothness
space analysis using the training data and the testing performance of the different
activations.
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