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Random Forest 

Our goal is to provide a holistic mathematical foundation 
for Artificial Intelligence (AI) which includes classic 

Machine Learning (ML) and Deep Learning (DL) through: 

Approximation Theory, Function space theory, 
Geometric Harmonic Analysis 



● Assume we have a dataset feature vectors of size 𝑛0.

● We normalize the feature values to 0,1 .

● Each feature vector is associated with response variable (regression) or one of  

𝐿 class labels (classification).

● In the latter case we map each label to its one-hot-encoding in ℝ𝐿

● Thus, now the dataset is composed of samples of a function

𝑓0: 0,1
𝑛0 → ℝ𝐿

Function space representation



In the functional setting we are given a function

In practice / applications, we get samples 

We apply recursive subdivision of the data
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Decision trees



Recursive ‘locally greedy’ subdivisions by hyperplanes  
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multivariate polynomials. For  
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Decision trees – regression 
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Node stopping criteria: minimal number of points, error threshold, etc.  



Decision trees in high dimensions

Performance considerations typically dictate:

- Searching for subdivisions along main axes only (special cases of 
hyper-planes)

- At each node, random pre-selection of feature/coordinate 
subset for this search (e.g.      , where     is dimension of feature 
space). 

- Sometimes, statisticians consider this random pre-selection as 
good ‘diversity’ practice. 

- Using only piecewise constant approximation.  
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Incoming new data   
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Decision tree inference



• ‘Best’ decision tree: NP-hard problem!

• Goal: overcome the ‘greedy nature’ of a single tree.

• ‘Bagging’: For each j, we select a random subset        consisting 
of 80% of the input data points.

• Over each random subset we create a tree 

• Here, the random ‘diversity’ is also justified from approximation 
theoretical perspective.  
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Random Forest



• Each tree                         provides regression

                                                                                           is a leaf.

• Random forest:  over-complete regression

• Adding trees → convergence to ‘minimal risk’ [Breiman 2001] 
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Random Forest
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Mean Squared Error (MSE)
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Let         be a child of      in a tree      

The Geometric Wavelet associated with 

M-term geometric wavelet sum

Sorting:



Geometric Wavelets
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S. Dekel & D. Leviatan, Adaptive multivariate approximation using binary space partitions, SIAM Journal on 
Numerical Analysis 43 (2005), 707-732. 



Let         be a child of      in a tree      

The Geometric Wavelet associated with 

M-term geometric wavelet sum

Sorting:



Geometric Wavelets
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Let         be a child of      in a tree      

The Geometric Wavelet associated with 

Other discrete options for the norm (aligned with standard approach):



Geometric Wavelets
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If       constructed over      ,  then we define the ‘root’ wavelet

Under ‘mild’ conditions on      , for any   

Geometric Wavelets
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2048-term
piecewise linear 

Geometric
Wavelet

approximation



2048-term
piecewise linear 

Geometric
Wavelet

approximation
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“Information gain” of node



Typically, in classification problems, the input training set consists of 
labeled data using L classes.

We transform to ‘functional’ setting: assign to each class the value of 
the one-hot encoding of dimension L

The input data is in the form ( )( ) ( ), ,n L

i ix x 

The mean in a domain
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Classification – unified functional approach 

Vector-valued wavelet



Incoming new data   

                                       

where,

                    (i)                       

                    (ii)                        is a leaf.
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Decision tree classification inference
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Classification – standard approaches



Classification – standard approaches



Classification – standard approaches



Classification – standard approaches



Create a wavelet decomposition of each tree in the random forest

A wavelet representation of the entire random forest

Assuming for simplicity,                                       order the wavelets of the RF 
 

The M-term approximation of a random forest is 
 

Wavelet decomposition of a RF
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S. Dekel & O. Elisha, Wavelet decompositions of Random Forests – smoothness analysis, sparse approximation 
and applications, Journal of Machine Learning Research 17 (2016). 



Automatic selection of M using a validation set
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Validation set – held out subset, 
not used for training the RF, only 
used to optimize the hyper-
parameter M 

Our goal – Generalization! To 
succeed on the unseen testing 
data
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Tree-based feature importance

- Assuming partitions are along main axes – each partition is associated 
with a specific feature.

- We sum up the “information gains” associated with nodes of each 
feature. 

- The features are ordered according to their gain contribution.

- Example: if no partition at a certain feature → Does not have impact 
on outcome → not important at all.

- The differences between methods: what is the form of “gain” used?

- We will see a mathematically justified wavelet-based method.
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Wavelet based feature importance – Wine quality 
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Wavelet based feature importance – Wine quality 
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Feature importance – Pima Indians Diabetes 

42

May the best model win:
(i) Let each algorithm 

create an ordering of 
feature importance,

(ii) Let each algorithm 
build a classification 
model using only the 
first K important 
features,

(iii) Compare accuracy of 
models.  
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SVM-based RF (binary classification) 

- One can use linear SVM subdivisions at each node of the trees
- This gives anisotropic partitions into convex domains
- All of the theory is supported for this case, such as wavelet 

decomposition of the anisotropic RF
- Examples on validation sets…



SVM-based RF (binary classification) 
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Forest wavelet Sparsity
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Compare with classical Besov semi-norm

Tree Besov Smoothness
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Besov index (for fixed p)
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Theorem



Theorem Jackson estimate for M-term wavelet forest approximation

0,      1 : 1 .p   = +

Jackson-type Theorem

( )
( ), .rM p

f f f cM f 


−− 

1 2p p
   

Recall the ordering 

and the M-term wavelet approximation

1

1
m

M

M

m

f
J



=

= 



• Assume we have samples of a function

• Construct a piecewise constant approximation using a Random Forest.

• Create a Wavelet decomposition of the Random Forest.

• Numeric algorithm to estimate minimal      for which

• The weak type smoothness of the function is estimated as  
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A modern recipe from the old Approximation Theory 
cook-book 
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Glimpse forward…analysis of deep learning on the 
MNIST dataset
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