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Abstract: We present an algorithm for highly geometric sparse representation. The algorithm combines the 

adaptive Geometric Wavelets method with the Active Contour segmentation to overcome limitations of both 

algorithms. It generalizes the Geometric Wavelets by allowing to adaptively construct wavelets supported on 

curved domains. It also improves upon the Active Contour method that can only be used to segment a limited 

number of objects. We show applications of this new method in medical image segmentation. 
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1 Introduction 

 The Active Contour (Level-Set) method is a well known approach for image segmentation [2, 11,13]. It 

is general enough to allow definition of different cost functions, in order to identify different types of objects in 

the image, but at the same time, it is also relatively simple to implement. It is also popular because it provides 

actual segmentation represented by continuous curves, whereas other ‘edge detection’ methods only compute 

the probability that a pixel is an ‘edge’ pixel or that a pixel belongs to an ‘object’.  

The main problem of the existing Active Contour methods is that it is limited to segmenting out a small 

number of objects (see an attempt to fix this in [3]). Our approach tries to overcome this issue, by applying local 

segmentations locally and recursively. The result is a multiresolution tree structure of disjoint sub-regions over 

which one may construct a highly geometric wavelet representation of the image. This approach generalizes the 

previous construction of Geometric Wavelets (GW) [5] where the recursive subdivision was applied using only 

straight lines, producing convex polygonal regions. We now recall the GW algorithm: 

Given a function    
2

: 0,1 0,1f   over the unit cube, it is subdivided using a line segment to two sub-

regions 1 2,   such that  

 
   2 2

2 2

' ''' ''L L
f Q f Q  
   , (1.1) 

 

is minimized,  where ' '',Q Q    are polynomials of some fixed low order. Note that for each candidate bisection, 

the optimal polynomials are given by the least squares method. This process continues recursively, until a 

stopping criterion is met, typically when (1.1) is below a given threshold. Observe that the sub-regions are 

always convex polyhedral domains, which is a crucial property when approximating with piecewise 

polynomials (see discussion in Section 2). 

 The result of this algorithm is a Binary Space Partition (BSP) tree,  composed of pairs   ,Q : 

the sub-regions and the approximating polynomials constructed over them. The root of the tree is 

 
  2

2

0,1
0,1 ,Q , where 

 
2

0,1
Q  is the approximation of the function over the unit cube. This tree can be used to 

define an adaptive Geometric Wavelet decomposition of the function in the following way. If  ,Q  is the 

father of  '',Q , define 

    ' ' ' ': : 1f Q Q        , (1.2) 
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as the geometric wavelet associated with the sub-region ' and the function f . The low resolution component, 

associated with the root of the BSP tree is  

 
   

2 2
0,1 0,1

: Q  . (1.3) 

The wavelets (1.2) are in fact a ‘local difference’ components that belong to the detail space between 

two levels in the BSP tree, a ‘low resolution’ level associated with Q and a ‘higher resolution’ level associated 

with 'Q . The GW method follows the classical procedure of n -term wavelet approximation ([4], [6]): The 

importance of the wavelet is measured by its 2L  norm, and so we reorder: 

 
1 2 32 2 2

...
k k k

        (1.4) 

Given an integer n , we have the n -term approximation 
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 .                                                                 (1.5) 

It can be shown that under mild condition on the BSP tree and the function f ,  

 f f



  . 

Since edge singularities in images are in general not line segments, the above method will require 

bisections at several levels of the BSP tree to approximate them. To this end, we enhance the method of [5], by 

using more advanced segmentation algorithms at each recursive subdivision step. Instead of minimizing (1.1), 

we minimize a Mumford-Shah type functionals such as [2]  

 
         

 
2 2

2 2

in out
L in L out

f Q f Q length
 

 
      , (1.6) 

where   is a closed curve and  in   and  out   are its inside and outside domains, respectively. The first two 

terms are the penalties for approximation over the two sub-regions and the third term is the penalty for curve 

length. Again, for each fixed curve, the approximation polynomials are uniquely determined by the least squares 

method. There are numerous variants to (1.6) and numerical algorithms to compute them. These algorithms are 

all iterative and most of them are highly sensitive to the input initial curve. In our algorithm we also use a more 

localized level-set variation [10] that works well if the initialization curve is ‘close’ to the solution curve. For 

some given 0  , let     be an approximation to the Dirac of   



 4 

 
 

 
1

1 cos , 0 ,
: 2

0, ,

x
x

otherwise


 

   

   
     

    



 

and denote for some pre-determined radius r  
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Then, a ‘local’ energy functional is given by 

               : , ,rE x x y F I y y dydx x x dx      
  

     , (1.7) 

 

where F  is an ‘internal’ energy term (see the details of [10]).  

Our Active Geometric Wavelet (AGW) algorithm for sparse representation is thus composed of 3 steps:  

A. Initialization - In the first step we try to find connected groups of pixels with similar values. The outer 

boundaries of these connected groups are used as initial guesses for the segmentation algorithm in the 

second step.  

B. Construction of the geometric BSP tree -  Since the contours computed in step A are expected to be close 

to objects in the image, the segmentation is computed with the localized functional (1.7). In case this 

segmentation gives an error larger than a given threshold, we switch to the functional (1.6) and continue the 

subdivision process. The recursive application of these active contour segmentations creates a geometric 

BSP tree structure over the image.  

C. Creation of the n -term approximation - An approximating wavelet sum is created according to (1.4) and 

(1.5). 

 The paper is organized as follows. In section 2 we provide the theoretical foundation for the AGW 

method. In Section 3 we describe the algorithm in detail and in section 4 show numerical examples for 

Computed Tomography (CT) images. 

 

2 Theoretical background 

2.1 A Jackson estimate for piecewise polynomial approximation using non-convex domains 

Let  1

d

r  denote the multivariate polynomials of total degree 1r   (order r ) in d  variables. Our 

objective is to approximate a given function by low order polynomials over a possibly non-convex sub-
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domains. For polynomial approximation over a single convex domain there is a complete characterization of the 

degree of approximation by smoothness measures such as the modulus of smoothness and K -functional, where 

the constants are universal over all convex domains (see [5] and references therein). However, the situation is 

essentially different when approximating over non-convex domains (see examples in [9]). 

In the following we define the notion of an  -class that quantifies how ‘close’ a given domain is to being 

convex. We then give a Jackson estimate for an n -term approximation using piecewise polynomials over sub-

domains all in the same  -class. 

Definition 2.1  Let 1  . We say that a bounded domain d  belongs to the  -class if there exist an 

ellipsoid   such that     , where   is the  -blowup of   

   :  : v x v x        , v  center of  . 

John’s Lemma [7] proves that all bounded convex domains in d  are in the d  class. In some sense, the notion 

of the  -class improves upon the ‘Chunkiness Parameter’ [1] which is frequently used in the Finite Element 

Method literature to evaluate the shape of a given domain for the purpose of local polynomial approximation. 

The ‘Chunkiness Parameter’ relates to the ratio between a minimal enclosing ball and maximal contained ball, 

so in this sense using ellipsoids is better for long and thin, but possibly non-convex domains. The following 

lemma is a generalization of Lemma 2.4b from [5], where it was proved for convex domains. 

Lemma 2.2 For any   that belongs to  -class,  1

d

rP   and 0 ,p q   we have 

   

1 1

q p

q p

L L
P P



 
 , 

with constants of equivalency depending on d , r , p , q  and  . 

Proof By the equivalency of finite dimensional Banach spaces, we have that 
     0,1 0,p qL B L B

P P


, for any 

polynomial  1

d

rP  , where    0, :nB l x x l   , with constants of equivalency depending only on 

p , q , d , r  and  . Since   is in the  -class, there exists an ellipsoid     and an affine transformation A , 

A x M x v    , satisfying   0,1A B  , for which 

     10,1 0,B A B    . 
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Therefore, 
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We can now apply the machinery introduced in [8] to obtain a Jackson estimate. The following theorems 

are in fact Theorem 3.3 and Theorem 3.4 from [8], formulated in a general enough manner that allows us to 

apply them for the case of piecewise polynomial approximation over general subdomains. 

Theorem 2.3 Suppose  m  is a sequence of functions in  d

pL , 0 p  , which satisfies the following 

additional properties when 1 p   

(i)  d

m L  , supp m mE   with 0 mE   , and 
1

1

p

m m m p
c E




   . 

(ii) If mx E , then 

1

1

,j j m

p

m

x E E E j

E
c

E 

 
  
 
 

 , 

where the summation is over all indices j  for which 
jE  satisfies the indicated conditions.  

Denote (formally) : mm
f    and assume that for some 0 p   

    
1

: m pm
N f




    . (2.1) 

Then  mm
     a.e. on d , and hence, f  is well defined. Furthermore, if 1 p  , condition (2.1) can 

be replaced by the weaker condition 

    : ,m p
wl

N f


     (2.2) 

where  m wl
x



 denotes the weak l -norm of the sequence  mx : 

    1: inf : # :   1,2,.... m mwl
x M m x Mn n for n



    . 
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Theorem 2.4  Under the hypothesis of Theorem 2.3, suppose  *

1m j




  is a rearrangement of the sequence  m  

such that * *

1 2 ...
p p

    . Denote *

1
:

n

n jj
S


  . Then 

     =1 1n p
f S cn N f with p     ,                                              (2.3) 

where 1c   if 0 1p   and  1, ,c c p c  if 1 p  . Furthermore, the estimate remains valid if condition 

(2.1) can be replaced by (2.2) when 1 p  . 

 We first observe that if the AGW method uses piecewise constants, then we actually have equality in 

condition (i) of Theorem 2.3 for any type of domain. For higher order polynomials, we need to assume that the 

domains are in the  -class for some fixed   and then we obtain condition (i) by application of Lemma 2.2. 

Also, if each step of the recursive subdivision bisects a domain into sub-domains of relatively ‘substantial’ area, 

then also condition (ii) of Theorem 2.3 is satisfied. The quantity  N f  should be considered as a ‘geometric 

sparsity gauge’ for the function f . It will be typically very small for cartoon-type images, if the domains of the 

Active Geometric Wavelets are aligned with the curve singularities. In these settings, Theorem 2.4 says that a 

‘greedy’ n -term approximation based on AGW performs well.  

2.2 Adaptive local selection of the weight   

One of the key elements of the AGW algorithm is a correct choice of the parameter   in (1.6). A possible 

strategy is the following: As an initial guess, choose a large value of the parameter, one that gives an empty 

segmentation, that is, a segmentation where all the pixels are considered to be ‘outside’. Then, gradually, 

diminish the value of  , until some segmentation is achieved. As a motivation for this strategy we consider 

minimizing the Chan-Vese functional (1.6) over the simple indicator function of a circle. More formally, 

suppose we have an function I  defined on the cube  
2

0,1 . We would like to minimize  

      
 

 
 

 
2 2

1 2 1 2, , ,
in out

M M c c I c I c length
 

            ,                        (2.4) 

where    
2

: 0,1 0,1   is any closed curve.  in   is the region (or union of regions) that is (are) inside   

(including the boundary of  ) and  out   is the complement of  in   in  
2

0,1 . More specifically, we wish to 

investigate the dependence of the solution on  .  
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Theorem 2.5 Let    
2

: 0,1 0,1I   the characteristic function of a circle     
2 2

00,1 : 0,1C x x x a      

where 0 0.5a   . Then with  2

0 0.5 1a a     we have  

  
 2 2

0

0

1 , ,
min

2 , 0 ,

a a
M

a

   


  

  
 

 

                   0

0

, ,
argmin

, 0 ,C

M
  


  

 
 

 
 (2.5) 

 

where    is the empty curve, for which  out I  ,  in    and C C   . 

 

Remark: We restrict ourselves to the case where the radius of the circle is sufficiently small, i.e.  

0 0.5a   , so as to keep the image boundaries far from the object in question in order not to deal with 

some geometric issues that arise from such proximity. This is not a significant restriction and allows a simpler 

proof. 

Proof of Theorem 2.5  For the proof we’ll use the following definition: 

         : : ,         : : ,in outin in             

for the set of all curves that are completely inside  , and the set of all curves that are completely outside it, 

respectively. Next, we calculate the penalty for approximation in a region where the function takes two values \: 

an area of 1k  with value  1a  and an area of 2k  with value 2a : the average is    1 1 2 2 1 2k a k a k k   and the 

penalty is 

 

 

2 2 2

1 2 1 21 1 2 2 1 1 2 2
1 1 2 2

1 2 1 2 1 2

.
k k a ak a k a k a k a

k a k a
k k k k k k

    
      

     
 

Let us first find 
 

 arg min
in C

M





.  If in  , then   2length a  , otherwise    CM M  , because the 

penalty for length for C  is smaller than that of   and the sum of penalties for inner and outer approximation 

for   cannot be smaller than that of C , which is 0. Moreover, if the considered curve,  , is not a circle, then 

according to the isoperimetric inequality, a circular curve with the same area will give a smaller value for M , 

because it will have a smaller length penalty. Thus, we may consider only the circular curves in in . 

Denote the radius of   as r  and M  becomes a function of r  with 0 r a  . In this case, according to 

above calculation,  
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and 

 
2

2 2

2 2

1 1 3
'' 2 0

1 1

a r
M r

r r

 


 

    
     

    
. 

The second derivative is always negative, which implies that the first derivative is strictly decreasing from 

 ' 0M    to    'M a a    . 

If a  , 'M  is always non-negative for 0 r a  , and so M non decreasing. Therefore, the minimum is 

obtained at 0r  . Since 0 a   , this agrees with the first case in (2.5). If a  , there’s a parameter r  for 

which  ' 0M r   and M  has a local maximum, since '' 0M  . Therefore, a global minimum is achieved at one 

of the end points 0r  , with    2 20 1M a a    or r a , with   2M a a . If    0M M a , then 

 2 21 2a a a     which is exactly the condition 0  , and this again agrees with the first case in (2.5). If 

   0M a M , then 0   and this agrees with the second case in (2.5). 

Next, we deal with the case where   is not necessarily contained in the circle. We now describe M  as a 

function of three variables: ,p q  and l , where 

        
2

: ,      : 0,1 \ ,         : .p in C q in C l length      

The functional (2.4) now takes the form 

 
  2 2

2

1
, ,

1

a q a p pq
M p q l l

a p q

 




  
   

 
, 

where we observe that not all non-negative triplets  , ,p q l  are geometrically feasible. Next we define a 

functional of two variables 
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2 2

2

1
, : 4

1

a q a p pq
Y p q p q

a p q

 
 



  
    

 
. 

Observe that by the isoperimetric inequality, for any curve  ,    4length p q   , with equality for 

circles and so    ,Y p q M  . Observe that if it is possible for some fixed pair ,p q , to choose   to be a 

circle, then this would imply    
, ,  feasible

, min , ,
p q l

Y p q M p q l . However, there are cases where this is not possible, 

such as where   contains C  and almost all of \I C , with 2p a  and 21q a    , for some small  . In 

this case,   cannot have the shape of a circle.  

We now minimize Y  over 2 20, 0,1A a a          . We compute 

  

  

22 2 1

2

22 2 1

2

1
+2 4 ,

1

2 4 ,
1

Y q a q
p q

p p q p q

Y p a p
p q
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and then 

       

       

2 1
13 32 2 2 2

2

2 1
13 32 2 2 2

2

2 2 1 1 4 4 ,

2 2 1 4 4 .

Y
q p q a q p q p q

p

Y
p p q a p p q p q

q

   

   

 

 


         




        



 

Observe that for 0p   and 0q  , we have that 
2 2 2 2, 0Y p Y q     . For a point to be a minimum it is 

necessary that 
2 2 2 2, 0Y p Y q     , so there are no internal minimum points. On the lines  2 20, 1a a       

and 2 20,1a a     , we have 

   2 2,1 0,         , 0,
Y Y

p a a q
p q

 
 

  
 

 

so the minimum of Y  is on the union of the two lines  20, 0inA a     and 20 0,1outA a     . 

Furthermore, for every point  0, outz q A  , the point  ' ,0 inz q A   satisfies    'Y z Y z , because 

   
2

2 2

2
'

1

a
Y z a q a q Y z

a


 


    


, 
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where we use the condition 2 0.5a  . The conclusion is that the minimum of Y  is attained on inA . On this 

line, M  and Y  have the same value, so the minimizer of Y  is either    , 0,0p q   or    2, ,0p q a , as 

shown before. 

Finally, the minimum of M over A  is also attained at    , 0,0p q   or    2, ,0p q a ; otherwise, the 

minimum for M  is attained at some point \ inz A A . Denote by 0z  the point for which Y  attains its minimum 

on inA  (either    , 0,0p q   or    2, ,0p q a ), then,        0 0M z Y z Y z M z   , which is a 

contradiction.  

 

We conclude from the last result that for the simple case of a characteristic image of a circle, the approach of 

taking a large value of  , i.e.  0 a   , then reducing it until a non-empty segmentation is achieved 

( 0  ), is indeed an approach that gives the required segmentation. 

3 Overview of the AGW algorithm 

The algorithm is composed of three stages: Initialization, construction of the BSP tree and building an 

approximation. In the first step we try to find contours that will serve as initial guesses for the segmentations. 

Since the level-set method is sensitive to the initialization, starting from a good initial guess is critical to the 

success of the algorithm. Therefore, we begin by searching for groups of pixels with relatively similar grey-

level and sort these groups according to their set size. Sets with size smaller than a threshold are discarded. The 

result of applying this step on standard test images can be seen in Figures 1 and 2 below.  

 

                   
 

Figure 1: Initial pixel groups for the “Peppers” image 
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Figure 2: Initial pixel groups for the “Cameraman” image 

 

In Figure 3 we see a Computed Tomography (CT) image and the pixel groups computed for this image. 

The goal in medical imaging is to segment correctly the various internal organs and perform certain 

measurements and analysis. We see that some key organs such as the kidneys and spine were not identified, 

since the imaging characteristics of these organs have higher variability. Therefore, to correctly identify initial 

pixel groups associated with these organs, we applied an anisotropic diffusion algorithm [12] to sharpen the 

edges and smooth the areas between them and then computed the pixel groups on this pre-processed image 

(Figure 4). 

 

          

Figure 3:  Initial pixel groups for a CT image 
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Figure 4: CT image after anisotropic diffusion and the pixel groups computed from it 

 

 In the second step, the algorithm builds the BSP tree. It minimizes the ‘local’ functional (1.7) with the 

outer contours of the pixel groups found in the first step, starting with the largest group and continuing in a 

diminishing order. Each of these iterations gives a bisection of a sub-region of the picture to an object and 

background and adds two new sibling nodes to the BSP tree at some level. If a pixel group is segmented, but the 

approximation error is above some required threshold, the algorithm continues to bisect it using a grid of circles 

as the initial guess and minimizing the ‘global’ functional (1.6).  

In Figure 5 we see the initial guess for the first segmentation, obtained from the largest pixel group. In 

Figure 6 we see the segmentation computed from this initial guess. We see that the segmentation did not 

correctly segment the liver. This is exactly the weak point of a regular Active Contour algorithm that our 

method solves, because since the approximation error in this domain is found to be large, this domain will be 

further subdivided. In Figure 7 we see the grid of circles that serves as an initialization for the active contour 

segmentation of the first domain and in Figure 8 we see the correct segmentation appearing at the second level 

of the BSP tree. 

 

    

                     Figure 5: Initial guess for segmentation                                 Figure 6: Segmentation at first level 
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                  Figure 7: Initialization of second level segmentation                Figure 8: Segmentation at second level 

 

The minimization process is stopped when the value of the functional is fluctuating about a certain value 

for a number of iterations. The output of this step is a BSP tree and a corresponding set of geometric wavelets. 

In the final step the Active Geometric Wavelets are ordered by their norm as in (1.4) and an approximation is 

created from the low resolution component and the largest n  terms. 

To summarize, this is the AGW algorithm: 

 

1. Creation of initial pixel groups: 

a. (Optional) Create a pre-processed input image for this step by applying anisotropic diffusion to the original image. 

b. For each pixel p  in the picture 

i. If not part of a pixel group, create a new candidate pixel group and  add p  to the group, 

ii. For every unprocessed pixel q  in group: if one of its 4-connected neighbors r  does not belong to another 

group and    I r I q    (for some threshold  ), add r  to the group. 

c. Sort groups according to size and discard groups whose size is smaller than a threshold. 

2. Initialize a BSP tree with the root 
     2 2
0,1 0,1

, ,I Q  . 

3. For every leaf  ,  in the tree, if the approximation error is larger than a threshold 

a. Create an initialization curve. If the domain   contains pixel groups from step 1, then the initialization curve is 

determined from the largest such contained group. Else the initialization is a grid of small circles intersected with 

 . 

b. Minimize the local Active Contour functional with large  .  

c. Repeat previous step, diminishing   until a valid non-empty segmentation is found. 
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d. Create and add to BSP two leaves corresponding to the two sub-regions found in step 3.c. 

4. Sort the Active Geometric Wavelets  according to (1.4): 
1 2
, ,    

5. For a given n , the output of the algorithm is the n -term approximation  
 

2
0,1

1
ki

n

i

 



 . 

 

 

4 Experimental Results 

Below, in Figure 9 we show an example of medical image segmentation which is one of the potential 

applications of our AGW method. On the left we see the segmentation that is derived from the n -term Active 

Geometric Wavelet approximation with n  increasing (for several values of n ). We see that with more terms 

added, the algorithm correctly adds the various organs of the body. On the right, we show the compact support 

of the wavelet that is added at that particular step, i.e. the n -th term. 
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Figure 9 Adding Active Geometric Wavelet terms to the approximation 
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