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Abstract:  

We present Adaptive Direct Sampling (ADS), an 
algorithm for image acquisition and compression which 
does not require the data to be sampled at its highest 
resolution. In some cases, our approach simplifies and 
improves upon the existing methodology of Compressed 
Sensing (CS), by replacing the ‘universal’ acquisition of 
pseudo-random measurements with a direct and fast 
method of adaptive wavelet coefficient acquisition. The 
main advantages of this direct approach are that the 
decoding algorithm is significantly faster and that it 
allows more control over the compressed image quality, 
in particular, the sharpness of edges. 

 1. Introduction 
Compressed Sensing (CS) [1, 3, 4, 6] is an approach to 
simultaneous sensing and compression which provides 
mathematical tools that, when coupled with specific 
acquisition hardware architectures, can perhaps reduce 
the acquired dataset sizes, without reducing the 
resolution or quality of the compressed signal. CS builds 
on the work of Candès, Romberg, and Tao [4] and 
Donoho [6] who showed that a signal having a sparse 
representation in one basis can be reconstructed from a 
small number of non-adaptive linear projections onto a 
second basis that is incoherent with the first. The 
mathematical framework of CS is as follows: 

Consider a signal Nx∈R  that is k -sparse in the basis 
Ψ for NR . In terms of matrix representation we have 
x fΨ = , in which f  can be well approximated using 

only k N<<  non zero entries and Ψ is called the sparse 
basis matrix. Consider also an n N×  measurement 
matrix Φ  , where the rows of Φ  are incoherent with the 
columns of  Ψ . The CS theory states that such a good 
approximation of signal x can be reconstructed by taking 
only ( log )n O k N=  linear, non adaptive measurements 
as follows: [1, 3]: 

y x= Φ ,                                 (1.1) 
where y  represents an  1n×  sampled vector. Working 
under this ‘sparsity’ assumption an approximation to x  
can be reconstructed from y  by ‘sparsity’ minimization, 
such as 1l  minimization 

                         1 1
min lf y

f
−      ΦΨ =

                              (1.2)   

 

1.2 The “single pixel” camera  
 
For imaging applications, the CS framework has been 
applied within a new experimental architecture for a 
‘single pixel’ digital camera [10]. The CS camera 
replaces the CCD and CMOS acquisition technologies by 
a Digital Micro-mirror Device (DMD). The DMD 
consists of an array of electrostatically actuated micro-
mirrors where each mirror of the array is suspended 
above an individual SRAM cell. In [10] the rows of the 
CS sampling matrix Φ  are a sequence of n  pseudo-
random binary masks, where each mask is actually a 
‘scrambled’ configuration of the DMD array (see also 
[2]). Thus, the measurement vector y , is composed of 
dot-products of the digital image x  with pseudo-random 
masks. At the core of the decoding process, that takes 
place at the viewing device, there is a minimization 
algorithm solving (1.2). Once a solution is computed, 
one obtains from it an approximate ‘reconstructed’ image 
by applying the transform Ψ  to the coefficients. The CS 
architecture of [10] has few significant drawbacks:  
1. Poor control over the quality of the output 

compressed image: the CS architecture of [10] is not 
adaptive and the number of measurements is 
determined before the acquisition process begins, 
with no feedback during the acquisition process on 
the progressive quality.  

2. Computationally intensive sampling process: Dense 
measurement matrices such as the sampling operator 
of the random binary pattern are not feasible because 
of the huge space and multiplication time 
requirements. Note that in the one single pixel 
camera, the sampling operator is based on the 
random binary pattern, which requires a huge 
memory and a high computation cost. For example, 
to get 512 × 512 image with 64k measurements 
(25% sampling rate) a random binary operator 
requires nearly a gigabyte of storage and Giga-flop 
operations, which makes the recovery almost 
impossible [14]. The designing of an efficiently 
measurement basis was proposed [14, 16] by using 
highly sparse measurements operators, which solve 
the infeasibility of Gaussian measurement matrix or 
a random binary masks such as in the one pixel 
camera. Note, however, in [16], the trade-off 
between acquisition time and visual quality. To 
obtain good visual quality, when using TV 
minimization (which significantly increase the 
decoding time, compared to LP decoding time) 



recovery times of a 256 × 256 ‘boat’ image are 
around 60 min. 

3. Computationally intensive reconstruction algorithm:  
It is known that all the algorithms for the 
minimization (1.2) are very computationally 
intensive. 

2. Direct and adaptive image sensing 

 Our proposed architecture aims to overcome the 
drawbacks of the existing CS approach and achieve the 
following design goals: 
1. An acquisition process that captures n  measurements, 
with n N<< and ( )n O k= , where N  is the dimension 
of the full high-resolution image, assumed to be ‘ k -
sparse’. The acquisition process is allowed to adaptively 
take more measurements if needed to achieve some 
compressed image target quality.  
2. A decoding process which is not more 
computationally intensive than the existing algorithm in 
use today such as JPEG or JPEG2000 decoding.  

We now present our ADS approach: Instead of 
acquiring the visual data using a representation that is 
incoherent with wavelets, we sample directly in the 
wavelet domain. We use the DMD array architecture in a 
very different way than in [10]: 

1. Any wavelet coefficient is computed from two 
measurements of the DMD array.  

2. We take advantage of the ‘feedback’ architecture of 
the DMD where we make decisions on future 
measurements based on values of existing measurements. 
This adaptive sampling process relies on a well-known 
modeling of image edges using a wavelet coefficient 
tree-structure and so decisions on which wavelet 
coefficients should be sampled next are based on the 
values of wavelet coefficients obtained so far [8, 9]. First 
we explain how the DMD architecture can be used to 
calculate a wavelet coefficient from two DMD 
measurements. Modeling an image as a 
function ( )2

2f L∈ R , we have the wavelet 

representation ( ) , ,
, ,
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j l j l
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is the subband, j∈Z  the scale and 2l∈Z  the shift.  For 
orthonormal wavelets , ,

e e
j l j lψ ψ= . If we consider the Haar 

basis as an example, than a bivariate Haar wavelet 
coefficient of type 1 can be computed as follows 
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i.e., the difference of pixel sums over two neighboring 
dyadic rectangles multiplied by 2 j . By Similar 
computation we can sample the Haar wavelet 
coefficients of the second and third kinds with two 

measurements.  Moreover, there exist DMD arrays with 
micro-mirrors that can produce a grayscale value, not 
just 0 or 1 (contemporary DMD can produce 1024 
grayscale value). We can use these devices for 
computation of  arbitrary wavelet transforms, where the 
computation of each coefficient requires only two 
measurements, since the result of any real-valued 
functional g  acting on the data can be computed as a 
difference of two ‘positive’ ,g g+ −  ‘functionals’, i.e. 
,where the coefficients are positive:                      

, , 0g g g g g+ − + −= −     ≥ . 

3. Modeling of image edges by wavelet tree-
Structures and the ADS algorithm 
Most of the significant wavelet coefficients are located in 
the vicinity of edges. Wavelets can be regarded as multi-
scale local edge detectors, where the absolute value of a 
wavelet coefficient corresponds to the local strength of 
the edge. We impose the tree-structure of the wavelet 
coefficients. Due to the analysis properties of wavelets, 
coefficient values tend to persist through scale. A large 
wavelet coefficient in magnitude generally indicates the 
presence of singularity inside its support. A small 
wavelet coefficient generally indicates a smooth region. 
We use this nesting property and acquire wavelet 
coefficients in the higher resolutions if their parent is 
found to be significant. For further detection of 
singularities at fine scales, we estimate the Lipschitz 
exponent.  

3.1 The Lipschitz exponent 
 
Our goal is to estimate the significance of wavelet 
coefficients that were not sampled yet, using values of 
coefficients that were already sampled. To this end we 
use the well known characterization of local Lipschitz 
smoothness by the decay of wavelet coefficients across 
scales [12]. A function f  is said to be Lipschitz α  in 
the neighborhood of 1 2( , )x x   if there exists 1ε  and 2ε  as 
well as 0A >  such that for any 1 1h ε<  and 2 2h ε<   

 
2 2 / 2

1 1 2 2 1 2 1 2( , ) ( , ) ( )f x h x h f x x A h h α+ + − ≤ +      (3.1)   
 
We actually use a subtler, ‘directional’ notion of local 
Lipschitz smoothness. So, for example, for the horizontal 
subband, 1e = , we defined local 1α  Horizontal 
Lipschitz smoothness by the minimal 0A >  satisfying 
for 1 1h ε<  

1
1 1 2 1 2 1( , ) ( , )f x h x f x x Ahα+ − ≤ . 

 
If the function is locally eα  Lipschitz at 1 2( , )x x  then 
for any wavelet ,

e
j lψ  whose support contains 1 2( , )x x , 

we have that ( ),, 2 ee j
j lf C

α
ψ ≤ . By taking the 

logarithm we have  
 

2 , 2log , log ( )e
j lf j Cψ α≤ + .           (3.3) 



 Thus the Lipschitz exponents can be determined from 
the slope of the decay of  2 ,log , e

j lf ψ  across scales 

(see also [15]).  These slopes are considered 
measurements of local singularities, such that when 
0 1eα< <  a function f  has a directional singularity 
which increases as 0eα → . Thus we estimate the 
existence of local directional singularities and the 
significance of unsampled coefficients at high scales, 
using estimates of local directional Lipschitz exponents 
from wavelet coefficients that were already sampled. 

3.2 The ADS Algorithm 
 
Our adaptive CS algorithm works as follows: 

1. Acquire the values of all low-resolution coefficients 
up to a certain low-resolution J . Each computation is 
done using two DMD array measurements as in (2.1). In 
one embodiment the initial resolution J  can be selected 

as 2log
2
N const  +  

. In any case, J  should be bigger if 

the image is bigger. Note that the total number of 
coefficients at resolutions J≥  is ( )2 12 J N− , which is a 
small fraction of N . 

2. Initialize a ‘sampling queue’ containing the indices of 
each of the four children of significant coefficients at the 
resolution J .  Thus for a significant coefficient with 
index ( ), ,e J l , we add to the queue the coefficients with 

indices: ( )( )1 2, 1, 2 ,2e J l l− , ( )( )1 2, 1, 2 ,2 1e J l l− + , 

( )( )1 2, 1, 2 1,2e J l l− +  and ( )( )1 2, 1, 2 1,2 1e J l l− + + . 

3. Process the sampling queue until it is exhausted as 
follows: 

a. Sample the wavelet coefficient corresponding to 
the index ( ), ,e j l  at the beginning of the queue using 
two DMD array measurements (see Section  2).  

b. Add to the end of the queue the indices of the 
coefficient’s four children, only if one of the following 
holds: 

(i) The coefficient is at a resolution 2j J> −  and 
the coefficient’s absolute value is greater than a given 
threshold lowt .   

(ii) The coefficient is at resolution 1 2j J< ≤ −  and 
the corresponding estimated absolute value of its 
children using the local Lipschitz exponent method (see 
Section   3.1) is  greater than a given threshold hight . 

c. Remove the processed index from the queue and 
go to step (a). 

In a way, our algorithm can be regarded as an adaptive 
edge acquisition device where the acquisition resolution 
increases only in the vicinity of edges! Observe that the 
algorithm is output sensitive. Its time complexity is of 
the order n  where n  is the total number of computed 

wavelet coefficients, which can be substantially smaller 
than the number of pixels N . The number of samples is 
influenced by the size of the thresholds used by the 
algorithm in step 3.b. It is also important to understand 
that the number of samples is influenced by the amount 
of visual activity in the image. If there are more 
significant edges in the image, then their detection at 
lower resolutions will lead to adding higher resolution 
sampling to the queue.   

4. Experimental results 

To evaluate our approach, we use the optimal k -term 
wavelet approximation as a benchmark. It is well known 
[5] that for a given image with N  pixels, the optimal 
orthonormal wavelet approximation using only 
k coefficients is obtained using the k  largest 
coefficients 

31 2
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For biorthogonal wavelets this ‘greedy’ approach gives a 
near-best result, i.e. within a constant factor of the 
optimal k -term approximation. One can apply 
thresholding and construct a k -term approximation 
using only coefficients whose absolute value is above the 
threshold, which still requires the order of N  
computations. In contrast, our ADS algorithm is output 
sensitive and requires only order of n  computations. To 
simulate our algorithm in software, we first pre-compute 
the entire wavelet transform of a given image. However, 
we strictly follow the recipe of our ADS algorithm and 
extract a wavelet coefficient from the pre-computed 
coefficient matrix only if its index was added to the 
adaptive sampling queue. In fig 1(a) we see a 
‘benchmark’ near-best 7000-term biorthogonal [9,7] 
wavelet approximation of the Lena image, extracted 
from  the ‘full’ wavelet representation by thresholding. 
In fig 1(b) we see a 6782-term approximation extracted 
from an ADS adaptive sampling process with n =12796 
sampled wavelet coefficient. 

 

 



  
(a) 7000-term  

 
(b) ADS 6782-term 

 

Fig.1. (a) Near-best 7000-term [9,7] approximation 
computed from the ‘full’ wavelet representation 
N=262,144, PSNR=31 dB (b) ADS 6782-term [9,7] 
approximation, extracted from n=12,796 adaptive 
wavelet samples, PSNR=28.7 dB.  

 

5. Conclusion 
We present an architecture that acquires and compresses 
high resolution visual data, without fully sampling the 
entire data at its highest resolution. By sampling in the 
wavelet domain we are able to acquire low resolution 
coefficients within a small number of measurements. We 
then exploit the wavelet tree structure to build an 
adaptive sampling process of the detail wavelet 
coefficients. Experimental results show good visual and 
PSNR results with a small number of measurements. The 
coefficients acquired by the ADS algorithm can be 
streamed into a tree-based wavelet compression 
algorithm whose decoding time is significantly faster 
then the solution of (1.2). 
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