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ABSTRACT. In this paper, we take a new approach to autoregressive image gen-
eration that is based on two main ingredients. The first is wavelet image coding,
which allows to tokenize the visual details of an image from coarse to fine de-
tails by ordering the information starting with the most significant bits of the
most significant wavelet coefficients. The second is a variant of a language trans-
former whose architecture is re-designed and optimized for token sequences in this
‘wavelet language’. The transformer learns the significant statistical correlations
within a token sequence, which are the manifestations of well-known correlations
between the wavelet subbands at various resolutions. We show experimental
results with conditioning on the generation process.

1. INTRODUCTION

The generation of high-resolution visual information is certainly one of the most
remarkable achievements of modern-age artificial intelligence. One of the prominent
methods is diffusion-based models [7, 12, 23, 25, 27]. In essence, diffusion models
attempt to learn inversions of ill-posed operators, such as additive Gaussian noise,
blurring, etc., so an image may be generated from random noisy or blurry seeds.

Another line of research is designing autoregressive models, that apply the ar-
chitecture of powerful Large Language Models (LLMs) [21, 31, 33]. These autore-
gressive methods [8, 24] convert the image pixel representation to a series of visual
tokens and then apply generative language techniques.

In this paper, we refine this line of research and provide a mathematically robust
approach to the autoregressive image generation process. To this end, we reach
out to a classic technique in image processing, specifically, wavelet image coding
[26, 29, 30]. Wavelets [4, 6, 17] are one of the main tools of modern approxima-
tion theory for nonlinear, adaptive approximation. The various wavelet transforms
provide the means to transform an image into a representation that captures the
essence of the visual information in a sparse way. Typically, the significant wavelet
coefficients are a small fraction of the coefficients and represent important edge and
texture information, while the insignificant coefficients with small absolute values
are associated with smooth regions of the image. The goal of wavelet image com-
pression methods, such as JPEG2000, is then to efficiently store the information of
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only the significant coefficients. In fact, the underlying method of the popular JPEG
image compression algorithm [36], invented in the 80s, contains many elements of
wavelet coding, where a local Discrete Cosine Transform, a precursor of wavelets,
is used. However, in this paper, we leverage the progressive wavelet compression
technique, a more advanced form of image compression. It creates a bit-stream
where every bit corresponds to the next most important piece of visual information.
Since we are generating images rather than decoding them from a compressed file,
there is no need to create actual binary bit-streams, and using a ‘wavelet language’
of a limited number of tokens is sufficient.

Thus, our new approach to autoregressive image generation is based on two main
ingredients. The first is progressive wavelet image coding, which allows to tokenize
the visual information of an image from coarse to fine details. This can achieved
using as few as 6 tokens, by ordering the information starting with the most sig-
nificant bits of the most significant wavelet coefficients. The second ingredient is
a variant of an NLP decoder-only transformer [21, 31, 33] whose architecture was
re-designed and optimized for token sequences in this ‘wavelet language’ The trans-
former learns the significant statistical correlations within a token sequence, which
are the manifestations of well-known correlations between the wavelet subbands at
various resolutions [1, 16, 18]. During inference, this allows the generation of visu-
ally meaningful images from an initial random seed generated from sampled from
the distribution of the scaling function coefficients at the lowest resolution.

Using the wavelet autoregressive approach, where the ‘wavelet language’ contains
only a few tokens, provides many attractive features. The length of the token se-
quences during training or inference can be flexible, where longer sequences imply
more detailed or higher-resolution images. Guiding the generative process using
a class affiliation or text prompting is easily achieved by concatenating the corre-
sponding vector representations to the tokens’ vector representation of low dimen-
sion. Stochastic control using simple transformer inference techniques, allows to
create from one textual prompt a diversity of corresponding images. Furthermore,
since each token is associated with the local support in the image domain of the
corresponding wavelet, one can switch the guidance during the generative process
to allow different prompting for different regions.

Our paper is organized as follows. We begin with a review of related work in
Section 2. In Section 3, we review wavelet image coding and explain how one may
extract from the classical theory the ability to tokenize the visual information of
images. In Section 4, we focus on components of language transforms that we
redesign to serve our special wavelet language. We further provide several methods
that can be used to direct the generation process under certain conditions: class
label and/or textual prompt. In Section 5, we provide experimental results. Finally,
in Section 6, we discuss possible future applications of our method, such as multi-
modality generation and compositions of blobs.

2. RELATED WORK

In this section, we first review the current state of the art in image generation.
We then review some methods that apply wavelets as a frequency decomposition
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backbone for various aspects of style transfer, acceleration, and optimization of
existing image generation methods, etc.

Currently, many commercial solutions apply diffusion-based models [7, 12, 19,
23, 25, 27]. In essence, diffusion models learn inversions of ill-posed operators, such
as additive Gaussian noise, blurring, etc., so images may be generated from random
noisy or blurry seeds. One then enforces various conditions on images created
through the time steps of the inversion process so that the final generated image
may correspond to a given text prompt.

Recently, there is renewed interest in autoregressive methods with the hope that
they will outperform the diffusion models. The methods of VQGAN [8] and DALL-
E [24] along with [34, 35| utilize a visual tokenizer to discretize images into grids
of 2D tokens, which are then flattened to a 1D sequence for autoregressive learn-
ing, mirroring the process of sequential language modeling. For example, in [24] a
discrete variational autoencoder is trained to compress each 256 x 256 RGB image
into a 32 x 32 grid of image tokens, where each such token can assume 8192 possible
values. This creates a relatively short context sequence of 1024 tokens, but with a
vocabulary of 8192 word tokens. The TiTok method, recently introduced in [3§],
shows how to combine Vision Transformers with the Vector-Quantization method
to arrive at an autoregressive method that may use only 32 tokens. In comparison,
our method may use only 6-7 tokens for any image resolution and any level of fine
detail generation.

In contrast to typical raster-scan methods, where single tokens are sequentially
predicted, the method of [32] provides an autoregressive learning algorithm based
on predicting the image’s next-scale, or next-resolution.

Some methods, such as [39, 40], use wavelets as means for frequency decomposi-
tion representations for image inpainting, style transfer, and generative adversarial
network methods. Some works propose to use wavelets as part of diffusion methods
[11, 20] to speed up the diffusion approach by applying the denoising process in the
wavelet regime.

To the best of our knowledge, this is the first time wavelets are being used as the
basis for autoregressive image generation.

3. ELEMENTS OF WAVELET IMAGE CODING

In this section, we review some elements of wavelet image coding [26, 29, 30] that
we use for our generative method. Essentially, we are interested in the process that
takes an image in its raw pixel form as input and generates a sequence of tokens that
capture its visual details. The structure of the sequence from coarse to fine details
is achieved by ordering the information starting with the most significant bits of
the most significant wavelet coefficients. En par with wavelet coding, we also have
a goal to create token sequences that are as short as possible. This creates shorter
contexts for the transformer decoder and improves its performance. As we shall
see (Subsection 3.2.3) it is quite easy to convert sequences of few wavelet tokens to
shorter sequences at the tradeoff of using a larger vocabulary of tokens.

3.1. Wavelet Transforms. A univariate wavelet system [4, 17] is a family of real
functions in Ls(R) of the form {¢j,k 2 (4, k) € Zz} built by dilating and translating
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a unique mother wavelet function

Yin(e) =272 — k),
where the mother wavelet typically has compact support (or fast decay) and has r
vanishing moments

(3.1) /:rkw(x)dx:(), k=0,1...,r—1.
R

Wavelet systems can be constructed to serve a basis of Ly(R). To facilitate

applications, one then also constructs a dual ¢ of ¢, where (V) ks 1/;]",1@’> =010k k5
so that for each f € La(R),

F=Y i
ak
For special choices of ¢ , the set {1} forms an orthonormal basis for Ly(R) and

then, ¥ = 1.

Usually, one starts the construction of a wavelet system from a Multi- Resolution
Analysis (MRA) generated by a scaling function ¢ € Ly (R) that satisfies a two-
scale equation

p=> app(2-—k).
k
One then sets
V; = span {gpjyk = 2_j/2g0 (2_j . —k:) NS Z} , JEZ,
which implies (under certain mild conditions)
VcWVicVyc Vo C Vg, ﬂVj = {0}, U]'V} = LQ(R).

Again, to facilitate applications, one may also construct a dual @ of ¢, where
(0., Po k') = Ok, so that for each f €V},

= Z (f' Pjk) Pk
2

Equipped with the MRA, one then proceeds to construct the wavelet 1 such that
W; = span{y; : k € Z} with Vi1 + W1 = Vj. A classic example for an or-
thonormal MRA and wavelet system where ¢ = ¢ and ¢ = 1;, are the Haar scaling
function and Haar wavelet

1 x € [0 l)
o 1, ze€ [0, 1], o 1247
p (@) = { 0, else. ¥ (z) = 51 Z:lsee 13:1]

The bivariate Haar system (see below) is a good choice when working with piece-
wise constant images, such as the MNIST handwritten digits [5]. For some of our
experiments, we use a famous wavelet system from the Cohen Daubechies Feauveau
(CDF) family of wavelets [4], which is sometimes termed bior4.4 (r = 4 in (3.1))
or [9,7] in the signal processing community (the supports of the scaling functions
and wavelets, as well as the lengths of the associated filters, are 9 and 7). The
generating functions of the bior4.4 are depicted in Figure 1.
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FIGURE 1. The CDF [9,7] wavelet system (figure reproduced from [3]).

The wavelet model can be easily generalized to any dimension, via a tensor prod-
uct of the wavelet and the scaling functions. Assume that the univariate dual scaling
functions ¢, » and dual wavelets 1, z;, are given. Then, a wavelet bivariate basis is
constructed using three types of basic wavelets

Y1, m2) = p(z1)h(x2), P (21, 32) 1= P(z1)P(22), P (21, 32) 1= (1) (T2),

(w1, w9) = Ga1)d(w2), V(w1 m2) = (1) @(w2), P (w1,22) = P(x1)Y(x2).
The bivariate wavelet transform of f € Lo(R?), in terms of the bivariate wavelet
tensor basis
e =272 k), 9% =272 k), e=1,2,3,j€Z ke’
is then R
f= > (05 1005 k-
e=1,2,3,j€Z,keZ?
The bivariate wavelet decomposition can thus be interpreted as a signal decompo-
sition in a set of three spatially oriented frequency subbands: LH(e = 1) detects
horizontal edges; HL (e = 2) detects vertical edges and HH (e = 3) detects diagonal
edges.

Under the assumption that ¥ and 1[) are compactly supported (or have fast de-
cay), a wavelet coefficient (f, @Zjek> at a scale j represents the information about the
function in the spatial region of radius ~ 27 in the neighborhood of 27k, k € Z2.
At the next finer scale j — 1, the information about this region is represented by
four wavelet coefficients, which are described as the children of (f, zﬂj .- This leads
to a natural tree structure organized in a quad tree structure of each of the three
subband types as shown in Figure 2. As j decreases, the child coefficients add finer
and finer details into the spatial regions occupied by their ancestors.
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FIGURE 2. Wavelet coefficient tree structure across the subbands
(MRA decomposition).

In image processing, one uses the Discrete Wavelet Transform (DWT). It works by
initially assuming that the image pixels {fr = fi, ks } 11 po—; are good approximants
of the projections on the shifts of the dual scaling function with the underlying
function f (see [17, Section 7.3.1] for a detailed justification)

fk’ ~ <f7 ¢O,k>'
With these coefficients as input, one uses the DWT to compute coefficients down

to some predefined low-resolution m. For simplicity, we may assume that M = 2™
and that we use the DWT to compute

(3.2) {<f7()5m,k>}7 {<f7¢§,k>}v I1<j<m, e=123.

Wavelet representations are considered very efficient for image compression [26,
29, 30]. The edge information typically constitutes a small portion of a typical
image, while the dual wavelet coefficients have a large absolute value only if edges
intersect the support of the corresponding dual wavelets. Consequently, the im-
age can be approximated well using a few significant wavelet coefficients. A clear
statistical structure also follows: large/small values of wavelet coefficients tend to
propagate through the scales of the quadtrees depicted in Figure 2. As an example,
a sparse wavelet representation of a 512 x 512 fishing boat image and a compressed
version of it are shown in Figure 3, where the compression algorithm JPEG2000 is
based on the sparse representation. The Figure clearly depicts that the significant
wavelet coefficients (coefficients with relatively large absolute values) are located on
strong edges of the image.

3.2. Embedded Wavelet Tokenization. The sparse wavelet representation (3.2)
of an image provides the perfect infrastructure for the generation of embedded
coding representations [26, 29, 30]. Embedded coding is similar in spirit to binary
finite precision representations of real numbers, where the “encoding” can cease
at any time and provide the “best” approximation of the real number achievable
within the framework of the binary digit representation. Similarly, the embedded
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(a) Fishing boat image. (b) 15267 significant coeffi- (c) Compressed image 1:17.
cients.

F1GURE 3. Image compression based on sparse wavelet approximation.

coder can cease at any time and provide the “best” representation of an image
achievable within its framework. Embedded coding streams can be generated from
wavelet representations by ordering the information on the wavelet representation
starting with the most significant bits of the most significant coefficients. That is,
the coefficients with the largest absolute value. In image coding applications the
goal is to generate a compressed bit stream of ‘0’ and ‘1’s. This can be efficiently
achieved by using information theoretical tools such as arithmetic coding. Here, our
goal is somewhat different where we aim to create an efficient tokenization method
conforming to the following two objectives:

(i) Ensuring statistically frequent structural patterns - The existence of com-
mon patterns within the token sequence allows the language models to learn
them as contexts when they attempt to generate the most probable next
token in the context of the previous tokens. The wavelet tokenization pro-
cesses described below provide that by creating token sequences that are
ordered based on coefficient absolute value and then resolution. It is known
[26, 29], that there are strong correlations between insignificant coefficients
with their ‘ancestors’ at lower resolutions (see Subsection 3.2.2).

(ii) Trade-off between sequence length versus number of tokens - When token
sequences become very long, the LLMs need to deal with longer contexts,
which can be challenging. At the same time, a dataset of possibly shorter
sequences that are based on a large vocabulary of tokens can also be chal-
lenging for different reasons. As we shall see, the method of Subsection
3.2.1 uses 7 tokens and may create long sequences. The method of 3.2.2
is a somewhat more advanced and manages to both reduce the number of
tokens by 1 and at the same time reduce the sequence lengths significantly
as the dimensions of the images increase. In Subsection 3.2.3 we review
standard methods that allow to control this tradeoff by merging frequent
sub-sequences into new tokens.

First, for simplicity of notation, using (3.2), denote for I = (i1,i2), 1 < i1,iy < 2

ay = <f’ Sam,1>'
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We also map the coefficients {(f, 1[1]5,9}, 1<j<m,e=1,23,
ag < <f7 w;,k%

based on their location
I=(i1,i2), 41 >3Vip>3, it <MAix <M,

in the coefficient matrix. We note in passing that one may assume that the low
resolution scaling function coefficients from (3.2) are known during training and are
randomly sampled from some distribution during image generation and therefore
need not be part of the tokenization.

3.2.1. Encoding a wavelet representation into a token sequence. We now show how
to process the numeric representations of the coefficients, from most significant to
least significant and ‘encode’ them into a relatively compact series of tokens. The
representation using the series of tokens should be invertible. That is, one should be
able to convert (e.g. ‘decode’) the token sequence back to the wavelet representation.

To this end, assuming the image pixels are normalized to the range [0, 1], one
can show that for an image of dyadic dimension [M, M] = [2™,2™], after m — 1
iterations of the bivariate DWT

(3.3) mlax|0q\ < om=1,

Assuming for simplicity that all images of a given dataset have the same dyadic
dimensions [M, M], then this bound holds for all of their wavelet representations.
Our first option is to initialize a threshold 7' = 2™~2 and begin scanning the wavelet
coefficients of the image, in a predetermined order (see below) for significance, with
the goal of reporting only those coefficients for which the following holds

T< ‘OJ ]| < 2T.
Our second option, is to compute separately for each image in the dataset

(3.4) m := [log, mlax\afﬂ,

and then initialize for the specific image 7' = 2~!. In this scenario, we store and
use the parameter m for each image in the training set along with its sequence of
tokens.

We also maintain a matrix of approximated wavelet coefficients {ar} which we
initialize with zeros. Once we complete the processing at a given bit plane, we up-
date T' <— T'/2 and repeat the process. At each bit-plane we report the significant
coefficients that were just uncovered in this bit-plane using a token ‘NowSignificant-
Neg’ if the coefficient is negative or a token ‘NowSignificantPos’ if it is positive. At
the time of uncovering, we modify the approximation of the coefficient &; to have
the absolute value 37'/2, with the reported sign. Next, we add a token to repre-
sent the coefficient’s next significant bit, ‘NextAccuracy(’ if the coefficient satisfies
lar| < |ar| or the token ‘NextAccuracyl’ if |ay| > |&r|. The approximation &g is
updated accordingly by subtracting or adding 7'/4 (depending on the sign of the
coefficient and the accuracy bit type).

Let us demonstrate with an example. Assume T=16 and oy = —17.45. There-
fore, the coefficient is first uncovered in the current bit plane. When we arrive
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at the index I, we report a ‘NowSignificantNeg’ token for this coefficient, provid-
ing it with a temporary approximation &y = —24, which lies in the middle of the
segment [—T,—2T] = [-16,—32]. Next, since in fact |ay| < 24, we report a to-
ken ‘NextAccuracy(Q’ to represent the coefficient’s next significant bit, providing
an updated approximation a;y = —20, which lies in the middle of the segment
[-T,—-3T/2] = [-16,—24], leading to a better approximation of the ground truth
value.

In case a coefficient has been uncovered in any of the previous bit-planes and is
already known to be significant, we only add one of the tokens ‘NextAccuracyQ’ if
lar| < |ar| or ‘NextAccuracyl’ if |ay| > |&r|. We then update the approximation
&g by subtracting or adding 7'/4 (depending on the sign of the coefficient and the
accuracy bit type).

Assuming the bit-plane scanning order of the coefficients is fixed, one then only
needs to add the token ‘Insignificant’ to provide a valid invertible tokenization
process. One simply scans the coefficients in the fixed order and uses their true
known value to test and apply one of three possibilities:

(i) |az| > 2T: The coefficient has already been reported as significant in a
previous bit-plane. Therefore one reports the token ‘NextAccuracy(Q’ or
‘NextAccuracyl’ depending on the test |a;| < |ap].

(ii) T < |ag| < 2T First report the token ‘NowSignificantNeg’ or ‘NowSignifi-
cantPos’ depending on the sign and then report the token ‘NextAccuracy(’
or ‘NextAccuracyl’.

(iii) |as| < T report ‘Insignificant’.

The process described above, although completely sufficient for invertible tok-
enization, potentially creates long sequences. Specifically, it does not take into
consideration the local correlations among ‘neighboring’ insignificant wavelet coef-
ficients. Due to the sparsity property of the wavelet transform, during the scanning
process, many of the ‘Insignificant’ coefficients form local groups. Moreover, there
are correlations between local groups of insignificant coefficients of the same sub-
band type across resolutions in the manner of the quad-tree structure of Figure 2.
Image compression algorithms such as the EZW [29] or SPIHT [26], are based on
statistical zero tree models that try to capture these correlations across resolutions
(see the Zero-Tree method in the next subsection). As we shall later see, for image
generation, we actually rely on the powerful capabilities of the transformer models
to learn correlation patterns of the ‘wavelet language’ of the given dataset. However,
we do ‘ease the burden’ off the transformers significantly by utilizing the structure
of the groups of insignificant coefficients to reduce the size of the token sequences,
thereby creating shorter contexts.

To this end, we add two additional tokens for groups of insignificant coefficients:
‘Group4x4’ and ‘Group2x2’ and modify the scanning process to visit the coefficients
based on groups of 4 x 4. The first token is used in locations where the scan is at
an index (4l1,4ls), for some integers l1,lo. If at the current bit plane, all the 16
coefficients with indices I = (i1,12), 411 < i1 < 4(l1+1),4ls < iy < 4(la+1), are still
insignificant, we issue the token ‘Group4x4’ and the tokenization process continues
to the next group of 4 x 4 coefficients. However, if any of the coefficients of the
4 x 4 group becomes significant in the current bit-plane, the group breaks down to
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4 groups of 2 x 2. If a group of 2 x 2 is still composed of insignificant coefficients at
the current bit-plane, we add a token ‘Group2x2’. If a group of 2 x 2 breaks down,
then each coefficient from the group is reported individually as being ‘Insignificant’
or one of ‘NowSignificantNeg’, ‘NowSignificantPos’. The scanning process keeps
track of which groups broke up, so that only necessary and informative tokens are
generated. We summarize the seven tokens and their roles below

(i) ‘Group4x4’ — At the index (41, 4l2), the group of 16 coefficients {a;}, 41 <
i1 <4l + 4, 4y < iy < 4l + 4, are still insignificant, |a;| < T.

(ii) ‘Group2x2’ — At the index (2[;,2l2), the group of 4 coefficients {as}, 21; <
i1 <21 + 2, 2ls < iy < 2l + 2, are still insignificant, |af| < T

(iii) 'NowSignificantNeg’, 'NowSignificantPos’ — At the current location I, the
coefficient satisfies T < |a| < 27" If the coefficient was part of a group of
insignificant coefficients at the previous bit-plane, the group is now auto-
matically dissolved.

(iv) ‘Insignificant’ — At the current location I, the coefficient is still insignificant
and satisfies |af| < T. If the coefficient was part of a group of insignifi-
cant coefficients at the previous bit-plane, the group is now automatically
dissolved.

v) ‘NextAccuracy(0’, ‘NextAccuracyl’ — At the current location I, the coeffi-
cient has already been reported to be significant since it satisfies |oy| > T
Here, we improve the accuracy of its approximation using one of these to-
kens, depending on the test |a;| < |ag].

The bit-plane scan is carried out in two nested loops; the outer loop proceeds from
low resolution to high resolution, each time traversing the three types of wavelet
subbands. The inner loop traverses the 4 x 4 blocks. Figure 4 illustrates the outer
and inner scanning patterns.

v B
N
>
]
———
—> —

(a) Outer subband scanning (b) Inner scanning order of
order. 4 x 4 blocks.

FIGURE 4. A sketch illustrating the outer and inner scanning orders.

Figure 5 exemplifies the tokenization algorithm of an image from the MNIST
dataset [5]. The image was padded with zeros to be of dimensions M x M = 32 x 32,
with m = 5. The bottom row of the figure shows the tokens and their locations
on the wavelet image for the first three bit planes. To make the process clearer,
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we explicitly write the resulted sequence of tokens for the first bit plane shown in
Figure 5(d).

{‘Insignificant’, ‘Insignificant’, ‘NowSignificantPos’, ‘Insignificant’,
‘Insignificant’, ‘Insignificant’, ‘NowSignificantNeg’, ‘Insignificant’,
‘Group2x?2’, ‘Group2x2’,

‘Insignificant’, ‘Insignificant’, ‘Insignificant’, ‘NowSignificantNeg’,
‘Group2x2’,‘Group2x2’, ‘Group2x2’,
‘Group4x4’, ..., ‘Group4x4’}

The token sequences of the second and third bit-planes follow the same scanning
pattern. Eventually, the three sequences are concatenated in the natural order to
form the final sequence which describes the three bit planes wavelet image appearing
in Figure 5(c).

There is a very important hyper-parameter which is the choice of the smallest
threshold at the final bit-plane. Through this hyper-parameter, the wavelet repre-
sentation provides us with a very robust and stable trade-off of fine detail generation
and length of token sequences. Choosing a final threshold provides very consis-
tent control over visual quality relating to: “Visually Lossless”, “High”, “Medium”,
“Low”, etc. This is en par with the quality settings in digital cameras, which in turn
lead to a selection of the corresponding quantization tables of the JPEG algorithm
generating the compressed images.

3.2.2. Zero-tree tokenization. The Zero-Tree method is an alternative tokenization
method that is aligned with [29] and provides shorter sequences, especially as image
size increases. The zero-tree approach leverages on the correlations of insignificant
coefficients across resolutions. Statistically, if a wavelet coefficient at some resolution
is insignificant, then with very high probability (around 90% for real life images) its
descendants at the same subband and higher resolutions will also be insignificant.
With the zero-tree tokenization method the scanning visits coefficients from low to
high resolution and the tokens ‘Group2x2’ and ‘Group4x4’ are replaced with a single
‘zero-tree’ token. If the token is reported at a certain location in the scan, then it is
understood that the coefficient at this location as well as all its descendants are still
insignificant at the current bit-plane. The descendants of a coefficient at location

I:(il,iQ), 11 > 3Vig > 3, ilgM/Q/\iQSM/Q,
are its children
{(Qil, 2i2), (Qil, 219 + 1), (2’L'1 + 1, Qig), (2i1 + 1, 219 + ].)}

and then recursively their children. Once a coefficient is reported as a ‘zero tree’
coefficient, it is understood that all of its descendants are still insignificant and
the scanning skips them. For the FashionMNIST dataset (see examples below) the
mean token sequence length is 1822.5 for the zero blocks tokenization method and
1601.7 for the zero tree method, although the latter uses 6 tokens instead of 7.
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) 32x 32 padded MNIST im- ) Wavelet transform. (c) Significant coefficients af-
age ter 3 bit-planes.

(d) Wavelet domain tokeniza- ) Wavelet domain tokeniza- ) Wavelet domain tokeniza-
tion - first bit plane. tlon - second bit plane. tlon third bit plane.

FIGURE 5. Depiction of the tokenization process. On the top left
and middle, a 32 x 32 padded MNIST image and its wavelet trans-
form. On the top right, the wavelet approximation generated by
the first three bit-planes. The bottom row illustrates the tokens and
their locations on the 32 x 32 grid, where, ‘NowSignificantNeg’ and
‘NowSignificantPos’ tokens are annotated with orange “—” and blue
“4+” and signs respectively. The tokens ‘NextAcurracy0’ and ‘Nex-
tAccuracyl’ are marked with green down and red up triangles. The
purple dots represent ‘Insignificant’ coefficients and the brown and
pink squares represent the ‘Group2x2’ and ‘Group4x4’ zero block
tokens.

3.2.3. The trade-off of vocabulary size and sequence lengths. It is quite standard
in the field of autoregressive methods to control the tradeoff between the token
vocabulary size and the dataset’s mean token sequence length in an attempt to
find the optimal configuration for given computational resources and model archi-
tecture. Since the wavelet method uses a relatively very small number of tokens
(language models typically support a vocabulary of tens of thousands of tokens) and
creates relatively long sequences, it is relevant in scenarios where the computational
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resources do not allow the use of long token sequences. One of the simplest meth-
ods is Byte Pair Encoding (BPE) [10]. BPE is a subword tokenization technique
commonly used in natural language processing, which iteratively merges the most
frequent pairs of tokens into new tokens, thereby creating a more compact repre-
sentation of the data. We used HuggingFace’s tokenizers library [14] to generate
Figure 6
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FIGURE 6. The trade-off between vocabulary size and token se-
quence length for the fashionMNIST dataset.

3.2.4. Decoding the token sequence into an approximate wavelet representation. The
tokenization process described in the previous subsections can be easily inverted
back to an approximate wavelet representation. Moreover, any initial sub-sequence
can be inverted to provide a possibly coarser approximation. We initialize a matrix
of size M x M of the approximated wavelet coefficients {a;} with zeros and begin
the scanning process with the first bit-plane. Based on (3.3) or (3.4), we know how
to initialize the first bit-plane with the initial threshold 7" = 2™~2 or T' = 2™~1. We
then process the token sequence and update the approximated coeflicients using the
corresponding ‘significant’ and ‘bit accuracy’ tokens. If for any given reason, the
sequence of tokens terminates, we have the best possible approximated coefficients
{ar} from which we can obtain an approximated image by applying the inverse
DWT. Our decoding process relies on the assumption that the token sequence is
valid. For example, a ‘Group4x4’ token cannot appear while the decoder scan
position is at a location of indices not divisible by 4. It is obvious how to achieve
this in the context of image coding. However, during an image generation process,
this needs to be enforced using the conditional next-token inference described in
Subsection 4.6.

4. THE GENERATIVE WAVELET TRANSFORMER

Assume that for a certain dataset of images, we have established the translation
of the visual information of each image to a sequence of tokens encapsulating the
visual information from coarse to fine details as explained in Subsection 3.2. We
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assume that within the sequences, distinct patterns and relations exist between the
tokens. For example, the wavelet coefficients {(f, 45 ;)} of wavelets {¢7,} whose
support intersects with a certain portion of an edge of the image, will be significant
and aligned across scales in a tree-like structure as per Figures 2 and 3(b). At the
same time, coefficients of wavelets whose support intersects with a smooth area of
the image will be insignificant and they appear in local groups. As explained, they
also have a tree structure across scales, that can be captured explicitly by a ‘zero
tree’ token. This leads to the intuition that the powerful transformers created over
the last few years [21] are able to learn the patterns of the ‘wavelet language’ and
to generate them from some random seeds during inference.

In this section, we describe how we modified the architecture of the DistilGPT2
transformer model [28] to optimize it to align with the wavelet-based image gener-
ation method. This obviously requires training the modified model from scratch.
We found it useful to use the code from HuggingFace [13] as a starting point.

4.1. Token vector representation. Typically, in the standard scenarios of spoken
languages, transformers apply a ‘pre-processing’ learnable transform to tokens to
convert them to vector representations. The idea is that similar words should be
converted to vectors with some proximity, which intuitively serve as better input for
the transformer’s neural network. However, with the method of Subsection 3.2.1,
our wavelet dictionary includes only 7 tokens that have very distinctive and different
roles. Therefore, the simple transformation of the tokens to the one-shot encoding
of the standard basis of dimension 7 is probably a better, if not optimal choice.
Thus, the initial vector representation of a token is: ‘Group4x4’ — (1,0,0,0,0,0,0),
‘Group2x2’ — (0,1,0,0,0,0,0), etc. Therefore, in our ‘wavelet’ transformers the
‘token — vector’ learnable transformation is removed.

4.2. Initial bit-plane threshold. Recall that we have two options: to use a uni-
form initial bit-plane threshold for all images in the dataset derived from (3.3), or
to use an adaptive initial threshold for each image of the training set using (3.4). In
the latter case, we need to inform the transformer, per image, which initial thresh-
old the token sequence is associated with. We do this as follows: assume a given
dataset has [ possible values for m in (3.4) (e.g., [ = 4 for the MNIST dataset, see
Figure 7). Then, we concatenate a one-shot encoding of dimension [ of the initial
threshold parameter of the given image to each vector representation of each token.

For image generation, one may sample randomly from the distribution of [ pos-
sible initial thresholds. In the case that the image generation is conditioned on a
certain class (see Subsection 4.4), one can sample from the conditional distribution
of the possible thresholds of the specific class.
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FIGURE 7. Distribution of log, of the initial thresholds for the 70,000
MNIST images with the Haar wavelet transform.

4.3. Positional encoding. In classic transformer architectures [21], one adds the
positional encoding v,(t) of the position ¢ to the token’s vector representation
ve(z(t)). Learnt positional embedding applied a learned transform ¢ — v,(t). Some
transformers use hard-coded mapping of the position. Assuming the vector embed-
ding dimension is d. and the maximum length of a sequence is liax, then

up(£)(20 — 1) = sin(t/121%), 0, (t)(2i) = cos(t/12/%), 1 <i<d./2.

max max

In our scenario of the wavelet language, the position of a token in a sequence is
(bp, I), where bp is the enumeration of the bit-plane and I = (i1,1i2) is the index of
the current coefficient oy in the scan order. Therefore, we concatenate to the vector
representation of a token from Subsection 4.1, a vector component of dimension 3
with the location of the token (bp,i1,i2).

4.4. Generative guidance. It is obviously critical for any image generation method
to allow guidance of the generative process by placing a condition on the class type
of the generated image or a text prompt that describes it. Some image generation
models apply a joint embedding space for text and images for this purpose. One such
method is to used a pretrained model such as CLIP [22] that maps text and images
to a joint embedding space. The CLIP contains an image encoder f and a caption
encoder g, that during training over pairs of images with captions {(z, ¢)}, optimizes
a contrastive cross-entropy loss that encourages high dot-products (f(z), g(c)) in the
joint embedding space. Thus, any image generation method, can use the vector em-
bedding of the given text prompt ¢ to guide the generative process by conditioning
the image embedding f(x) to be highly correlated with the embedding of the textual
prompt.

In our case, since we converted the problem of image generation to a ‘wavelet-
language’ generation, we can apply ‘text’-type prompting methods. Having access
to a joint embedding text-image space allows us to train using the vector repre-
sentation of the image training set. Then, at image generation, we use the vector
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representation of the given text prompt to guide the generative process. There are
very simple ways of using these vector representations. We choose to concatenate
them to the vector representation of each token and its position (as explained above).
For example, as shown in Section 5, for the image datasets MNIST or FashionM-
NIST with 10 classes, it is easy to concatenate a vector of length 10 representing
the class of the image. In the case where we wish to guide the generative process
using a textual prompt, we may concatenate the CLIP vector embedding [22] of the
textual prompt to each token vector representation. As we discuss in Subsection
6.2, we hope this approach to guiding the generative process can be generalized to
composition of blobs [37], where a given guiding vector of a blob is used only at
positions of the scan where the support of the corresponding wavelet intersects the
blob.

4.5. Initialization of the generative process. Since the guidance of the gener-
ative process (Subsection 4.4) is applied through the concatenation of vector rep-
resentations to each token vector representation, in some cases, the initialization
becomes a minor issue. For example, when training on MNIST and generating dig-
its, one can get away with a simple random choice from the subset: ‘Insignificant’,
‘NowSignificantNeg’ or ‘NowSignifiantPos’ for the first token and from there the
transformer will generate a valid token sequence which is converted to an adequate
image of a digit from the pre-selected class.

A more robust method is as follows. Suppose we wish to generate a handwritten
digit from a certain digit class. Let {fs}scs be the subset of MNIST images from
that specific digit class and let

(41) {<f87¢m,k>}7 S 6 S7 k = (k17k2)7 1 S klakQ S 27

be the subset of low-resolution coefficients of these images defined by (3.2). Let
N (v, %) be the fourth-dimensional normal distribution, approximated by the subset
(4.1). We then sample from N(v,¥), a random group of four low-resolution coeffi-
cients. Now, the token representation of these coefficients can serve as a basis for
a robust initialization of the generative process of the required digit. In the case
where the guidance is provided by a vector representation of some text-prompt,
one can create the normal distribution using a subset of K-nearest neighbors in the
image vector representation space.

Once some random seeding allows us to initialize the token sequence, we may
introduce as much diversity as required using the methods of Subsection 4.7 so that
even using the same seed may generate various images corresponding to the given
guidance.

4.6. Conditional next token inference. In Greedy generative mode, using the
method of Subsection 3.2.1, the next selected token z(t), 1 < z(t) < 7, at loca-
tion t, is the token for which the transformer assigns the highest probability from
(p1(t),...,p7(t)). As described in Subsection 4.7 below, there are various alternative
methods to control the output of the transformer. However, since each generative
token inference step is a statistical event, it may occur that the next predicted token
is not valid at the current position of the wavelet bit-plane scan. To overcome this,
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we apply conditional probability to ensure any selected token satisfies the conditions
below relating to the context and the current position in the scan.

(i)
(i)
(i)

(iv)

v)

‘Group4x4’ - The scan is at an index (4l1,4l2) and the group has not yet
dissolved.

‘Group2x2’ - The scan is at an index (2l1,2l2) and the group has not yet
dissolved.

"NowSignificantNeg’, 'NowSignificantPos’ - At the current location I, the
coefficient « is still insignificant, possibly as part of a group of insignificant
coeflicients.

‘Insignificant’ - At the current location I, the coefficient o is still insignifi-
cant, possibly as part of a group of insignificant coefficients.
‘NextAccuracy0’, ‘NextAccuracyl’ - At the current location I, the coefficient
arg has already been reported to be significant.

4.7. Controlling the degree of generative diversity during inference. Since
we are applying a language transformer model we may use various simple stochastic
mechanisms to control the generative process during inference and allow a diversity
of possible images to be generated from a single prompt. Some of the available
stochastic methods are: Beam search with multinomial sampling, Top-k and Top-p.
In our experiments, we tested the latter two:

(i)

Top-k sampling - The Top-k inference method [9] filters the k& most likely
next words first and then samples from the probability mass that is re-
distributed among only those k next words. GPT2 adopted this sampling
scheme, which was one of the reasons for its success in story generation. In
Figure 9 below, we see a diversity of sandals generated by guiding the model
with the vector representation of the corresponding FashionMNIST ‘sandal’
class and using the Top-2 method. We see that using k = 2 is sufficient to
move the generative process from a deterministic process to a sufficiently
diverse stochastic process, yet with output that fits the class description.
Top-p sampling- In Top-p sampling or nucleus sampling, the selection pool
for the next token is determined by the cumulative probability of the most
probable tokens. Setting a threshold p, the model includes just enough
of the most probable tokens so that their combined probability reaches or
exceeds this threshold. Again, the distribution mass is redistributed among
these tokens and then the next token is sampled using this distribution. In
Figure 8 we see different examples of the digits ‘3’ and ‘8’ generated using
the Top-0.6 method.

5. EXPERIMENTAL RESULTS

We conducted experiments on the MNIST and FashionMNIST datasets. Here
are some details:

e The images in both datasets were padded with zeros to M x M = 32 x 32,

where M = 2", m =5 and normalized to have values within [0, 1].

e We used the Haar wavelet basis for the MNIST images and the bior4.4

wavelet basis for the FashionMNIST.
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e The images were tokenized with a final threshold of T' = 273 for MNIST
and T' = 27* for FashionMNIST.

e The maximal token sequence lengths were 1742 for MNIST and 3098 for
FashionMNIST.

e We trained two separate distillgpt2 models from scratch on the two datasets.
As for the training configurations, both training sessions had batch size 4,
learning rate 0.0004, and weight decay 0.01.

e Models were trained on an NVIDIA A100 GPU with 80GB; MNIST occu-
pied around 22GB while FashionMNIST occupied 61GB. Both models were
trained for a few days.

Results with different controlling methods appear below in Figures 8 and 9.

FIGURE 8. Digits generated with Top-p = 0.6 along with a depiction
of the generated wavelet coefficients.

FIGURE 9. Sandals generated with Top-k = 2 along with a depiction
of the generated wavelet coefficients.

More generated images for different classes of MNIST and FashionMNIST appear
in the following figures.
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FI1GURE 11. More FashionMNIST results.

6. DISCUSSION AND FUTURE WORK

In this paper, we introduced a novel method for image generation that is based
on elements of wavelet image coding and NLP transformers. Unfortunately, our
research group does not have access to sufficient computational resources at the
moment, so this work serves as a first modest proof of concept. Indeed, the wavelet
representation is a powerful tool in image processing that can serve as a basis for
many image generation functionalities. Here, we list some directions that we will
consider for future work.

6.1. Generation of color images at high resolution and with fine details.
In our experiments, we only generated small grayscale images. We provide here
some details on how the method can be generalized:

(i) Color images - For color images (or even spectral images), we may adopt a
well-known paradigm from image compression. For improved performance,
one may transform input images in the RGB color space to the YCbCr
color space. The Y component is the luminance component, essentially the
image’s grayscale part. The other two components, C'b and C'r, capture the
color information of the image. Typically, the luminance component carries
most of the visual information, and thus also, its encoding is usually the
significant part of an encoded image. In image coding, one usually encodes
separately each of the three channels. Our method can then be generalized to
color images by applying the DWT and the tokenization process separately
to each color channel.

(ii) Generating fine details - Using our wavelet model, finer details are captured
at higher bit-planes. The choice of the final threshold of the final bit-plane
provides excellent and very consistent control over the amount of detail one
wishes to generate. This quantization technique is at the heart of the JPEG
algorithms and translates to very specific modes in digital cameras that can
be set to: “Visually Lossless”, “High”, “Medium”, etc. This exact form of
control also applies to wavelets but, unfortunately, is not the default mode
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of operation in JPEG2000. Obviously, to generate finer details, one needs
to train the transformer on longer token sequences, again requiring more
computational resources.

6.2. Support for generation of compositions of blobs. In many cases, one
wishes to apply fine-grained control of compositional text-to-image generation, where
certain locations in the image, marked perhaps with bounding boxes or ellipses, re-
ceive different textual descriptions [37]. One possible method to accomplish this
using the wavelet generative approach is to apply the transformer in evaluation
mode and apply the vector representation of the blob’s textual prompt as described
in Subsection 4.4 whenever the bit-plane scan is at indices of wavelet coeflicients
whose support intersects the blob.

6.3. Multi-modal generation. The ability to represent an image’s visual infor-
mation as a sequence of tokens presents an attractive possibility of merging the
wavelet-based tokens with other language tokens to create a unified multi-modal
transformer.
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